
2013-11-19: Test Data Generators

Peter Thiemann

19 November 2013

1 Monads: An interface for instructions

1.1 primitive instructions

1.2 combining instructions (bind)

1.3 injecting values (return)

2 QuickCheck Instructions

2.1 QuickCheck can perform random testing with any value
of a type which is a member of type class Arbitrary

2.2 For any type a in Arbitrary there is a random value
generator of type Gen a

2.3 Gen is a monad

2.4 What are the instructions for this monad?

class NotArbitrary a where notArbitrary :: a
defines a constant value for each type

1

3 IO vs GEN

3.1 IO a

3.1.1 Instructions to build a value of type a by interacting with
the operating system.

3.1.2 Executed by the run-time system.

3.2 Gen a

3.2.1 Instructions to create a random value of type a

3.2.2 Executed by QuickCheck library functions.

4 Instructions for Test Data Generation

4.1 Why monad / instructions?

4.1.1 want to generate different data every time

4.1.2 construction method remains the same

4.2 Need data generation at different types

Prelude Test.QuickCheck> :i Arbitrary
class Arbitrary a where

arbitrary :: Gen a
shrink :: a -> [a]

..

5 Sampling

5.1 Testing of generators

sample :: Gen a -> IO ()

generates a few value and prints them

Prelude Test.QuickCheck> sample (arbitrary :: Gen Integer)
Prelude Test.QuickCheck> sample (arbitrary :: Gen Boolean)
Prelude Test.QuickCheck> sample (arbitrary :: Gen Doubles)
Prelude Test.QuickCheck> sample (arbitrary :: Gen [Integer])
,,,

2

6 Writing generators

6.1 The constant generator

6.1.1 return True always returns True

6.2 Using do notation

Prelude Test.QuickCheck> sample $ doTwice (arbitrary :: Gen Integer)
...

6.3 Even integers

evenInteger :: Gen Integer
evenInteger = do

n <- arbitrary
return (2*n)

7 Generation Library

7.1 Choosing from a range

choose :: Random a => (a, a) -> Gen a

7.2 Choosing between generators

oneof :: [Gen a] -> Gen a

8 Example: Generating a Suit

8.1 Recall

data Suit = Spades | Hearts | Diamonds | Clubs
deriving (Show, Eq)

8.2 Generator for suits

rSuit :: Gen Suit
rSuit = oneof [return Spades,

return Hearts,
return Diamonds,
return Clubs]

3

9 More generators

9.1 Choosing between elements

elements :: [a] -> Gen a

9.2 Can you define elements using oneof?

10 Generating a Rank

data Rank = Numeric Integer | Jack | Queen | King | Ace
deriving (Show, Eq)

rRank = undefined

11 Generating a Card

data Card = Card Rank Suit
deriving (Show, Eq)

rCard = undefined

12 Generating a Hand

data Hand = Empty | Add Card Hand
deriving (Show, Eq)

rHand = undefined

13 Making QuickCheck Use Our Generators

13.1 QuickCheck is type agnostic

13.2 It works with any type that is an instance of Arbitrary

instance Arbitrary Suit where
arbitrary = rSuit

4

14 Datatype Invariants

14.1 Sometimes datatype contain unwanted values

14.2 Example: Numeric 0

14.3 Filtering the valid values

validRank :: Rank -> Bool
validRank (Numeric r) = 2 <= r && r <= 10
validRank _ = True

14.4 A datatype invariant which should always by True

14.5 Test it

15 Test Data Distribution

15.1 Problem: what are the successful test cases?

15.2 They could be insignificant values

15.3 It’s important to know the distribution of the test data

prop_Rank r = collect r (validRank r)

15.4 collects and prints the tested values

16 Observing the Distribution of Ranks

17 Fixing the Generator

rRank = frequency [
(1, return Jack),
(1, return Queen),
(1, return King),
(1, return Ace),
(9, do {r <- choose (2,10); return $ Numeric r})]

5

18 Distribution of Hands

18.1 Collecting each individual hand generats too much data

18.2 Collect a sumary instead, e.g., the number of cards

numCards :: Hand -> Integer
numCards Empty = 0
numCards (Add _ h) = 1 + numCards h

18.3 Collecting the distribution

prop_Hand h = collect (numCards h) True

19 Fixing the generator

19.1 Returning Empty 20% of the time gives an average of 5
cards per hand

rHand = frequency [
(1, return Empty),
(4, do {c <- rCard; h <- rHand; return $ Add c h})]

20 Testing Algorithms

20.1 insert x xs

20.2 Inserts an element x into an ordered list xs

20.3 Result is also ordered

prop_insert :: Integer -> [Integer] -> Bool
prop_insert x xs = ordered (insert x xs)

20.4 Too weak: Precondition missing

21 Testing insert

prop_insert’ :: Integer -> [Integer] -> Property
prop_insert’ x xs = ordered xs ==> ordered (insert x xs)

6

21.1 However, it turns out that many test are very short:

prop_insert’ :: Integer -> [Integer] -> Property
prop_insert’ x xs =

collect (length xs) $
ordered xs ==> ordered (insert x xs)

22 Probability that a random list is ordered

22.1 Length 0: 100%

22.2 Length 1: 100%

22.3 Length 2: 50%

22.4 Length 3: 17%

22.5 Length 4: 4%

23 Generating ordered lists from the start

orderedList :: Gen [Integer]
orderedList = undefined

24 Using a Custom Generator

24.1 The type should say that the list is ordered

24.2 Define a new type

data OrderedList = Ordered [Integer]
instance Arbitrary OrderedList where

arbitrary = do {ol <- orderedList; return Orderedlist ol}

24.3 Testing insert properly

prop_insert’ :: Integer -> Orderedlist -> Bool
prop_insert’ x (Orderedlist xs) = ordered (insert x xs)

7

25 Summary

25.1 How to generate test data for quickCheck

25.1.1 Custom datatypes

25.1.2 Custom invariants

25.2 IO and Gen are both members of the Monad class (in-
structions)

25.3 How to create our own instructions?

8

	Monads: An interface for instructions
	primitive instructions
	combining instructions (bind)
	injecting values (return)

	QuickCheck Instructions
	QuickCheck can perform random testing with any value of a type which is a member of type class Arbitrary
	For any type a in Arbitrary there is a random value generator of type Gen a
	Gen is a monad
	What are the instructions for this monad?

	IO vs GEN
	IO a
	Instructions to build a value of type a by interacting with the operating system.
	Executed by the run-time system.

	Gen a
	Instructions to create a random value of type a
	Executed by QuickCheck library functions.

	Instructions for Test Data Generation
	Why monad / instructions?
	want to generate different data every time
	construction method remains the same

	Need data generation at different types

	Sampling
	Testing of generators

	Writing generators
	The constant generator
	return True always returns True

	Using do notation
	Even integers

	Generation Library
	Choosing from a range
	Choosing between generators

	Example: Generating a Suit
	Recall
	Generator for suits

	More generators
	Choosing between elements
	Can you define elements using oneof?

	Generating a Rank
	Generating a Card
	Generating a Hand
	Making QuickCheck Use Our Generators
	QuickCheck is type agnostic
	It works with any type that is an instance of Arbitrary

	Datatype Invariants
	Sometimes datatype contain unwanted values
	Example: Numeric 0
	Filtering the valid values
	A datatype invariant which should always by True
	Test it

	Test Data Distribution
	Problem: what are the successful test cases?
	They could be insignificant values
	It's important to know the distribution of the test data
	collects and prints the tested values

	Observing the Distribution of Ranks
	Fixing the Generator
	Distribution of Hands
	Collecting each individual hand generats too much data
	Collect a sumary instead, e.g., the number of cards
	Collecting the distribution

	Fixing the generator
	Returning Empty 20% of the time gives an average of 5 cards per hand

	Testing Algorithms
	insert x xs
	Inserts an element x into an ordered list xs
	Result is also ordered
	Too weak: Precondition missing

	Testing insert
	However, it turns out that many test are very short:

	Probability that a random list is ordered
	Length 0: 100%
	Length 1: 100%
	Length 2: 50%
	Length 3: 17%
	Length 4: 4%

	Generating ordered lists from the start
	Using a Custom Generator
	The type should say that the list is ordered
	Define a new type
	Testing insert properly

	Summary
	How to generate test data for quickCheck
	Custom datatypes
	Custom invariants

	IO and Gen are both members of the Monad class (instructions)
	How to create our own instructions?

