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1 Monads: An interface for instructions

1.1 primitive instructions

1.2 combining instructions (bind)

1.3 injecting values (return)

2 QuickCheck Instructions

2.1 QuickCheck can perform random testing with any value
of a type which is a member of type class Arbitrary

2.2 For any type a in Arbitrary there is a random value
generator of type Gen a

2.3 Gen is a monad

2.4 What are the instructions for this monad?

class NotArbitrary a where notArbitrary :: a
defines a constant value for each type

1



3 IO vs GEN

3.1 IO a

3.1.1 Instructions to build a value of type a by interacting with
the operating system.

3.1.2 Executed by the run-time system.

3.2 Gen a

3.2.1 Instructions to create a random value of type a

3.2.2 Executed by QuickCheck library functions.

4 Instructions for Test Data Generation

4.1 Why monad / instructions?

4.1.1 want to generate different data every time

4.1.2 construction method remains the same

4.2 Need data generation at different types

Prelude Test.QuickCheck> :i Arbitrary
class Arbitrary a where

arbitrary :: Gen a
shrink :: a -> [a]

..

5 Sampling

5.1 Testing of generators

sample :: Gen a -> IO ()

generates a few value and prints them

Prelude Test.QuickCheck> sample (arbitrary :: Gen Integer)
Prelude Test.QuickCheck> sample (arbitrary :: Gen Boolean)
Prelude Test.QuickCheck> sample (arbitrary :: Gen Doubles)
Prelude Test.QuickCheck> sample (arbitrary :: Gen [Integer])
,,,
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6 Writing generators

6.1 The constant generator

6.1.1 return True always returns True

6.2 Using do notation

Prelude Test.QuickCheck> sample $ doTwice (arbitrary :: Gen Integer)
...

6.3 Even integers

evenInteger :: Gen Integer
evenInteger = do

n <- arbitrary
return (2*n)

7 Generation Library

7.1 Choosing from a range

choose :: Random a => (a, a) -> Gen a

7.2 Choosing between generators

oneof :: [Gen a] -> Gen a

8 Example: Generating a Suit

8.1 Recall

data Suit = Spades | Hearts | Diamonds | Clubs
deriving (Show, Eq)

8.2 Generator for suits

rSuit :: Gen Suit
rSuit = oneof [return Spades,

return Hearts,
return Diamonds,
return Clubs]
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9 More generators

9.1 Choosing between elements

elements :: [a] -> Gen a

9.2 Can you define elements using oneof?

10 Generating a Rank

data Rank = Numeric Integer | Jack | Queen | King | Ace
deriving (Show, Eq)

rRank = undefined

11 Generating a Card

data Card = Card Rank Suit
deriving (Show, Eq)

rCard = undefined

12 Generating a Hand

data Hand = Empty | Add Card Hand
deriving (Show, Eq)

rHand = undefined

13 Making QuickCheck Use Our Generators

13.1 QuickCheck is type agnostic

13.2 It works with any type that is an instance of Arbitrary

instance Arbitrary Suit where
arbitrary = rSuit
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14 Datatype Invariants

14.1 Sometimes datatype contain unwanted values

14.2 Example: Numeric 0

14.3 Filtering the valid values

validRank :: Rank -> Bool
validRank (Numeric r) = 2 <= r && r <= 10
validRank _ = True

14.4 A datatype invariant which should always by True

14.5 Test it

15 Test Data Distribution

15.1 Problem: what are the successful test cases?

15.2 They could be insignificant values

15.3 It’s important to know the distribution of the test data

prop_Rank r = collect r (validRank r)

15.4 collects and prints the tested values

16 Observing the Distribution of Ranks

17 Fixing the Generator

rRank = frequency [
(1, return Jack),
(1, return Queen),
(1, return King),
(1, return Ace),
(9, do {r <- choose (2,10); return $ Numeric r})]
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18 Distribution of Hands

18.1 Collecting each individual hand generats too much data

18.2 Collect a sumary instead, e.g., the number of cards

numCards :: Hand -> Integer
numCards Empty = 0
numCards (Add _ h) = 1 + numCards h

18.3 Collecting the distribution

prop_Hand h = collect (numCards h) True

19 Fixing the generator

19.1 Returning Empty 20% of the time gives an average of 5
cards per hand

rHand = frequency [
(1, return Empty),
(4, do {c <- rCard; h <- rHand; return $ Add c h})]

20 Testing Algorithms

20.1 insert x xs

20.2 Inserts an element x into an ordered list xs

20.3 Result is also ordered

prop_insert :: Integer -> [Integer] -> Bool
prop_insert x xs = ordered (insert x xs)

20.4 Too weak: Precondition missing

21 Testing insert

prop_insert’ :: Integer -> [Integer] -> Property
prop_insert’ x xs = ordered xs ==> ordered (insert x xs)
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21.1 However, it turns out that many test are very short:

prop_insert’ :: Integer -> [Integer] -> Property
prop_insert’ x xs =

collect (length xs) $
ordered xs ==> ordered (insert x xs)

22 Probability that a random list is ordered

22.1 Length 0: 100%

22.2 Length 1: 100%

22.3 Length 2: 50%

22.4 Length 3: 17%

22.5 Length 4: 4%

23 Generating ordered lists from the start

orderedList :: Gen [Integer]
orderedList = undefined

24 Using a Custom Generator

24.1 The type should say that the list is ordered

24.2 Define a new type

data OrderedList = Ordered [Integer]
instance Arbitrary OrderedList where

arbitrary = do {ol <- orderedList; return Orderedlist ol}

24.3 Testing insert properly

prop_insert’ :: Integer -> Orderedlist -> Bool
prop_insert’ x (Orderedlist xs) = ordered (insert x xs)
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25 Summary

25.1 How to generate test data for quickCheck

25.1.1 Custom datatypes

25.1.2 Custom invariants

25.2 IO and Gen are both members of the Monad class (in-
structions)

25.3 How to create our own instructions?
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