
Einführung in Agda
https://tinyurl.com/bobkonf17-agda

Albert-Ludwigs-Universität Freiburg

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

24 Feb 2017

https://tinyurl.com/bobkonf17-agda


Programs that work — the dependent stairway

Choose an expressive type system
Express your specification as a type
Write the only possible program of this type

Thiemann Agda 2017-02-24 2 / 38



Programs that work — the dependent stairway

Choose an expressive type system
Express your specification as a type
Write the only possible program of this type

Thiemann Agda 2017-02-24 2 / 38



Programs that work — the dependent stairway

Choose an expressive type system

Express your specification as a type
Write the only possible program of this type

Thiemann Agda 2017-02-24 2 / 38



Programs that work — the dependent stairway

Choose an expressive type system
Express your specification as a type

Write the only possible program of this type

Thiemann Agda 2017-02-24 2 / 38



Programs that work — the dependent stairway

Choose an expressive type system
Express your specification as a type
Write the only possible program of this type

Thiemann Agda 2017-02-24 2 / 38



Thiemann Agda 2017-02-24 3 / 38



Why does it work?

The Curry-Howard Correspondence

Propositions as types
Proofs as programs

Central insight

Write program of this type
=

Find a proof for this proposition

Thiemann Agda 2017-02-24 4 / 38



Why does it work?

The Curry-Howard Correspondence

Propositions as types

Proofs as programs

Central insight

Write program of this type
=

Find a proof for this proposition

Thiemann Agda 2017-02-24 4 / 38



Why does it work?

The Curry-Howard Correspondence

Propositions as types
Proofs as programs

Central insight

Write program of this type
=

Find a proof for this proposition

Thiemann Agda 2017-02-24 4 / 38



Why does it work?

The Curry-Howard Correspondence

Propositions as types
Proofs as programs

Central insight

Write program of this type
=

Find a proof for this proposition

Thiemann Agda 2017-02-24 4 / 38



In Agda

Remember Curry-Howard

A type corresponds to a proposition
Elements of the type are proofs for that proposition

The role of functions
A function f : A→ B . . .

transforms an element of A to an element of B
transforms a proof of A to a proof of B
shows: if we have a proof of A, then we have a proof of B
is a proof of the logical implication A→ B

Thiemann Agda 2017-02-24 5 / 38



In Agda

Remember Curry-Howard

A type corresponds to a proposition
Elements of the type are proofs for that proposition

The role of functions
A function f : A→ B . . .

transforms an element of A to an element of B
transforms a proof of A to a proof of B
shows: if we have a proof of A, then we have a proof of B
is a proof of the logical implication A→ B

Thiemann Agda 2017-02-24 5 / 38



In Agda

Remember Curry-Howard

A type corresponds to a proposition
Elements of the type are proofs for that proposition

The role of functions
A function f : A→ B . . .

transforms an element of A to an element of B

transforms a proof of A to a proof of B
shows: if we have a proof of A, then we have a proof of B
is a proof of the logical implication A→ B

Thiemann Agda 2017-02-24 5 / 38



In Agda

Remember Curry-Howard

A type corresponds to a proposition
Elements of the type are proofs for that proposition

The role of functions
A function f : A→ B . . .

transforms an element of A to an element of B
transforms a proof of A to a proof of B

shows: if we have a proof of A, then we have a proof of B
is a proof of the logical implication A→ B

Thiemann Agda 2017-02-24 5 / 38



In Agda

Remember Curry-Howard

A type corresponds to a proposition
Elements of the type are proofs for that proposition

The role of functions
A function f : A→ B . . .

transforms an element of A to an element of B
transforms a proof of A to a proof of B
shows: if we have a proof of A, then we have a proof of B

is a proof of the logical implication A→ B

Thiemann Agda 2017-02-24 5 / 38



In Agda

Remember Curry-Howard

A type corresponds to a proposition
Elements of the type are proofs for that proposition

The role of functions
A function f : A→ B . . .

transforms an element of A to an element of B
transforms a proof of A to a proof of B
shows: if we have a proof of A, then we have a proof of B
is a proof of the logical implication A→ B

Thiemann Agda 2017-02-24 5 / 38



Plan

1 Prelude

2 Logic

3 Numbers

4 Vectors

5 Going further

Thiemann Agda 2017-02-24 6 / 38



Logic in Agda
Defining types: the true proposition

– Truth
data > : Set where

tt : >

Explanation (cf. data in Haskell)

– Truth a comment
data defines a new datatype
> is the name of the type
Set is its kind
tt is the single element of >

Thiemann Agda 2017-02-24 7 / 38



Logic in Agda
Defining types: the true proposition

– Truth
data > : Set where

tt : >

Explanation (cf. data in Haskell)

– Truth a comment
data defines a new datatype
> is the name of the type
Set is its kind
tt is the single element of >

Thiemann Agda 2017-02-24 7 / 38



Logic in Agda
Conjunction is really just a pair

– Conjunction
data _∧_ (P Q : Set) : Set where
〈_,_〉 : P → Q → (P ∧ Q)

Explanation

_∧_ the name of an infix type constructor
the underlines indicate the positions of the arguments
(P Q : Set) parameters of the type
〈_,_〉 data constructor with two parameters

Thiemann Agda 2017-02-24 8 / 38



Logic in Agda
Conjunction is really just a pair

– Conjunction
data _∧_ (P Q : Set) : Set where
〈_,_〉 : P → Q → (P ∧ Q)

Explanation

_∧_ the name of an infix type constructor
the underlines indicate the positions of the arguments
(P Q : Set) parameters of the type
〈_,_〉 data constructor with two parameters

Thiemann Agda 2017-02-24 8 / 38



Logic in Agda
Disjunction is really just Either

– Disjunction
data _∨_ (P Q : Set) : Set where

inl : P → (P ∨ Q)
inr : Q → (P ∨ Q)

Explanation

two data constructors
everything covered

Thiemann Agda 2017-02-24 9 / 38



Logic in Agda
Disjunction is really just Either

– Disjunction
data _∨_ (P Q : Set) : Set where

inl : P → (P ∨ Q)
inr : Q → (P ∨ Q)

Explanation

two data constructors
everything covered

Thiemann Agda 2017-02-24 9 / 38



A first program in Agda

Specification

– Conjunction is commutative
commConj1 : (P : Set) → (Q : Set) → (P ∧ Q) → (Q ∧ P)

Thiemann Agda 2017-02-24 10 / 38



A first program in Agda

Specification

– Conjunction is commutative
commConj1 : (P : Set) → (Q : Set) → (P ∧ Q) → (Q ∧ P)

Explanation

(P : Set) an argument of type Set with name P to be used
later in the type
(P : Set) and (Q : Set) declare that P and Q are types
(propositions)
(P ∧ Q) → (Q ∧ P) is the proposition we want to prove =
the type of the program we want to write

Thiemann Agda 2017-02-24 10 / 38



A first program in Agda

Specification

– Conjunction is commutative
commConj1 : (P : Set) → (Q : Set) → (P ∧ Q) → (Q ∧ P)

Let’s write it interactively

Thiemann Agda 2017-02-24 10 / 38



Should start with a screen like this

Thiemann Agda 2017-02-24 11 / 38



Variations on the specification

Fully explicit

– Conjunction is commutative
commConj1 : (P : Set) → (Q : Set) → (P ∧ Q) → (Q ∧ P)
commConj1 P Q 〈 p , q 〉 = 〈 q , p 〉

arguments P and Q are not used and Agda can infer them

With inferred parameters

– Conjunction is commutative
commConj2 : (P Q : Set) → (P ∧ Q) → (Q ∧ P)
commConj2 _ _ 〈 p , q 〉 = 〈 q , p 〉

just put _ for inferred arguments

Thiemann Agda 2017-02-24 12 / 38



Variations on the specification

Fully explicit

– Conjunction is commutative
commConj1 : (P : Set) → (Q : Set) → (P ∧ Q) → (Q ∧ P)
commConj1 P Q 〈 p , q 〉 = 〈 q , p 〉

arguments P and Q are not used and Agda can infer them

With inferred parameters

– Conjunction is commutative
commConj2 : (P Q : Set) → (P ∧ Q) → (Q ∧ P)
commConj2 _ _ 〈 p , q 〉 = 〈 q , p 〉

just put _ for inferred arguments

Thiemann Agda 2017-02-24 12 / 38



Variations on the specification

Implicit parameters

– Conjunction is commutative
commConj : ∀ {P Q} → (P ∧ Q) → (Q ∧ P)
commConj 〈 p , q 〉 = 〈 q , p 〉

Explanation

∀ {P Q} is short for {P Q : Set}
{P Q : Set} indicates that P and Q are implicit parameters:
they need not be provided and Agda tries to infer them
Successful here, but we get an obscure error message if Agda
cannot infer implicit parameters

Thiemann Agda 2017-02-24 13 / 38



Variations on the specification

Implicit parameters

– Conjunction is commutative
commConj : ∀ {P Q} → (P ∧ Q) → (Q ∧ P)
commConj 〈 p , q 〉 = 〈 q , p 〉

Explanation

∀ {P Q} is short for {P Q : Set}
{P Q : Set} indicates that P and Q are implicit parameters:
they need not be provided and Agda tries to infer them
Successful here, but we get an obscure error message if Agda
cannot infer implicit parameters

Thiemann Agda 2017-02-24 13 / 38



A second program in Agda

Specification

– Disjunction is commutative
commDisj : ∀ {P Q} → (P ∨ Q) → (Q ∨ P)

Thiemann Agda 2017-02-24 14 / 38



A second program in Agda

Specification

– Disjunction is commutative
commDisj : ∀ {P Q} → (P ∨ Q) → (Q ∨ P)

Let’s write it interactively

Thiemann Agda 2017-02-24 14 / 38



Logic in Agda
Negation at last

– Falsity
data ⊥ : Set where

– Negation
¬ : Set → Set
¬ P = P → ⊥

Explanation

The type ⊥ has no elements, hence no constructors
Negation is defined by reductio ad absurdum: P → ⊥
i.e., having a proof for P would lead to a contradiction

Thiemann Agda 2017-02-24 15 / 38



Logic in Agda
Negation at last

– Falsity
data ⊥ : Set where

– Negation
¬ : Set → Set
¬ P = P → ⊥

Explanation

The type ⊥ has no elements, hence no constructors
Negation is defined by reductio ad absurdum: P → ⊥
i.e., having a proof for P would lead to a contradiction

Thiemann Agda 2017-02-24 15 / 38



De Morgan’s laws

Specification

– DeMorgan’s laws
demND1 : ∀ {P Q} → ¬ (P ∨ Q) → (¬ P ∧ ¬ Q)
demND2 : ∀ {P Q} → (¬ P ∧ ¬ Q) → ¬ (P ∨ Q)

Thiemann Agda 2017-02-24 16 / 38



De Morgan’s laws

Specification

– DeMorgan’s laws
demND1 : ∀ {P Q} → ¬ (P ∨ Q) → (¬ P ∧ ¬ Q)
demND2 : ∀ {P Q} → (¬ P ∧ ¬ Q) → ¬ (P ∨ Q)

Interaction time

Thiemann Agda 2017-02-24 16 / 38



Plan

1 Prelude

2 Logic

3 Numbers

4 Vectors

5 Going further

Thiemann Agda 2017-02-24 17 / 38



Numbers in Agda

Surprise

Numbers are not predefined in Agda
We have to define them ourselves
(But there is a library)

Let’s try

Thiemann Agda 2017-02-24 18 / 38



Numbers in Agda

Surprise

Numbers are not predefined in Agda
We have to define them ourselves
(But there is a library)

Let’s try

Thiemann Agda 2017-02-24 18 / 38



Peano’s axioms1

Giuseppe Peano says . . .

1 zero is a natural number
2 If n is a natural number, then

suc n is also a natural number
3 All natural numbers can be (and

must be) constructed from 1. and 2.

An inductive definition

1
Image Attribution: By Unknown - School of Mathematics and Statistics, University of St

Andrews, Scotland [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=2633677

Thiemann Agda 2017-02-24 19 / 38

https://commons.wikimedia.org/w/index.php?curid=2633677


Peano’s axioms1

Giuseppe Peano says . . .

1 zero is a natural number
2 If n is a natural number, then

suc n is also a natural number
3 All natural numbers can be (and

must be) constructed from 1. and 2.

An inductive definition

1
Image Attribution: By Unknown - School of Mathematics and Statistics, University of St

Andrews, Scotland [1], Public Domain, https://commons.wikimedia.org/w/index.php?curid=2633677

Thiemann Agda 2017-02-24 19 / 38

https://commons.wikimedia.org/w/index.php?curid=2633677


Inductive definition in Agda

Natural numbers
data N : Set where

zero : N
suc : N → N

Explanation

Defines zero and suc just
like demanded by Peano
Define functions on N by
induction and pattern
matching on the
constructors

Thiemann Agda 2017-02-24 20 / 38



Inductive definition in Agda

Natural numbers
data N : Set where

zero : N
suc : N → N

Explanation

Defines zero and suc just
like demanded by Peano
Define functions on N by
induction and pattern
matching on the
constructors

Thiemann Agda 2017-02-24 20 / 38



Functional programming

Addition
add : N → N → N
add zero n = n
add (suc m) n = suc (add m n)

Subtraction
sub : N → N → N
sub m zero = m
sub zero (suc n) = zero
sub (suc m) (suc n) = sub m n

Thiemann Agda 2017-02-24 21 / 38



Functional programming

Addition
add : N → N → N
add zero n = n
add (suc m) n = suc (add m n)

Subtraction
sub : N → N → N
sub m zero = m
sub zero (suc n) = zero
sub (suc m) (suc n) = sub m n

Thiemann Agda 2017-02-24 21 / 38



Why specify properties?

Deficiency of Testing

Testing shows the
presence, not the
absence of bugs.

E.W. Dijkstra

Thiemann Agda 2017-02-24 22 / 38



What can we specify?

Properties of addition all require equality on numbers

Next surprise

Equality is not predefined in Agda
We have to define it ourselves
(But there is a library)

Let’s try

Thiemann Agda 2017-02-24 23 / 38



What can we specify?

Properties of addition all require equality on numbers

Next surprise

Equality is not predefined in Agda
We have to define it ourselves
(But there is a library)

Let’s try

Thiemann Agda 2017-02-24 23 / 38



What can we specify?

Properties of addition all require equality on numbers

Next surprise

Equality is not predefined in Agda
We have to define it ourselves
(But there is a library)

Let’s try

Thiemann Agda 2017-02-24 23 / 38



Inductive definition of equality

Equality on natural numbers

data _≡_ : N → N → Set where
z≡z : zero ≡ zero
s≡s : {m n : N} → m ≡ n → suc m ≡ suc n

Explanation

Unusual: datatype parameterized by two numbers
The constructor s≡s takes a proof that m ≡ n and thus
becomes a proof that suc m ≡ suc n

Thiemann Agda 2017-02-24 24 / 38



Properties of equality

Equality is . . .

– reflexive
refl-≡ : (n : N) → n ≡ n
– transitive
trans-≡ : {m n o : N} → m ≡ n → n ≡ o → m ≡ o
– symmetric
symm-≡ : {m n : N} → m ≡ n → n ≡ m

Thiemann Agda 2017-02-24 25 / 38



Properties of equality

Reflexivity

Need to define a function that given some n returns a proof
of (element of) n ≡ n
Straightforward programming exercise
Use pattern matching / induction
Agda can do it automatically

Thiemann Agda 2017-02-24 26 / 38



Properties of equality

Reflexivity

Need to define a function that given some n returns a proof
of (element of) n ≡ n
Straightforward programming exercise
Use pattern matching / induction
Agda can do it automatically

Interaction time

Thiemann Agda 2017-02-24 26 / 38



Properties of equality

Symmetry

m ≡ n → n ≡ m
Symmetry can be proved by induction on m and n
Introduces a new concept: absurd patterns
Less cumbersome alternative:
pattern matching on equality proof

Thiemann Agda 2017-02-24 27 / 38



Properties of equality

Symmetry

m ≡ n → n ≡ m
Symmetry can be proved by induction on m and n
Introduces a new concept: absurd patterns
Less cumbersome alternative:
pattern matching on equality proof

Interaction time

Thiemann Agda 2017-02-24 27 / 38



Properties of addition

Zero is neutral element of addition
neutralAdd0l : (m : N) → add zero m ≡ m
neutralAdd0r : (m : N) → add m zero ≡ m

Addition is associative
assocAdd : (m n o : N)
→ add m (add n o) ≡ add (add m n) o

Addition is commutative
commAdd : (m n : N) → add m n ≡ add n m

Thiemann Agda 2017-02-24 28 / 38



Properties of addition

Zero is neutral element of addition
neutralAdd0l : (m : N) → add zero m ≡ m
neutralAdd0r : (m : N) → add m zero ≡ m

Addition is associative
assocAdd : (m n o : N)
→ add m (add n o) ≡ add (add m n) o

Addition is commutative
commAdd : (m n : N) → add m n ≡ add n m

Thiemann Agda 2017-02-24 28 / 38



Properties of addition

Zero is neutral element of addition
neutralAdd0l : (m : N) → add zero m ≡ m
neutralAdd0r : (m : N) → add m zero ≡ m

Addition is associative
assocAdd : (m n o : N)
→ add m (add n o) ≡ add (add m n) o

Addition is commutative
commAdd : (m n : N) → add m n ≡ add n m

Thiemann Agda 2017-02-24 28 / 38



Properties of addition

Proving . . .

Neutral element and associativity are straightforward
Commutativity is slightly more involved
Requires an auxiliary function

Thiemann Agda 2017-02-24 29 / 38



Properties of addition

Proving . . .

Neutral element and associativity are straightforward
Commutativity is slightly more involved
Requires an auxiliary function

Interaction time

Thiemann Agda 2017-02-24 29 / 38



Plan

1 Prelude

2 Logic

3 Numbers

4 Vectors

5 Going further

Thiemann Agda 2017-02-24 30 / 38



Vectors in Agda

Vectors with static bounds checks

Flagship application of dependent typing
All vector operations proved safe at compile time
Key: define vector type indexed by its length

Thiemann Agda 2017-02-24 31 / 38



The vector type

data Vec (A : Set) : (n : N) → Set where
Nil : Vec A zero
Cons : {n : N} → (a : A) → Vec A n → Vec A (suc n)

concat : ∀ {A m n}
→ Vec A m → Vec A n → Vec A (add m n)

concat Nil ys = ys
concat (Cons a xs) ys = Cons a (concat xs ys)

Thiemann Agda 2017-02-24 32 / 38



The vector type

data Vec (A : Set) : (n : N) → Set where
Nil : Vec A zero
Cons : {n : N} → (a : A) → Vec A n → Vec A (suc n)

concat : ∀ {A m n}
→ Vec A m → Vec A n → Vec A (add m n)

concat Nil ys = ys
concat (Cons a xs) ys = Cons a (concat xs ys)

Thiemann Agda 2017-02-24 32 / 38



Safe vector access
“avoid out of bound indexes”

Trick #1

Type of get depends on length of vector n and index m
. . . and a proof that m < n

get : ∀ {A n} → Vec A n → (m : N) → suc m ≤ n → A

Trick #2

. . . type restricts the index to m < n

get1 : ∀ {A n} → Vec A n → Fin n → A

Thiemann Agda 2017-02-24 33 / 38



Safe vector access
“avoid out of bound indexes”

Trick #1

Type of get depends on length of vector n and index m
. . . and a proof that m < n

get : ∀ {A n} → Vec A n → (m : N) → suc m ≤ n → A

Trick #2

. . . type restricts the index to m < n

get1 : ∀ {A n} → Vec A n → Fin n → A

Thiemann Agda 2017-02-24 33 / 38



Safe vector access
“avoid out of bound indexes”

Trick #1

Type of get depends on length of vector n and index m
. . . and a proof that m < n

get : ∀ {A n} → Vec A n → (m : N) → suc m ≤ n → A

Trick #2

. . . type restricts the index to m < n

get1 : ∀ {A n} → Vec A n → Fin n → A

Thiemann Agda 2017-02-24 33 / 38



Safe vector access
“avoid out of bound indexes”

Trick #1

Type of get depends on length of vector n and index m
. . . and a proof that m < n

get : ∀ {A n} → Vec A n → (m : N) → suc m ≤ n → A

Trick #2

. . . type restricts the index to m < n

get1 : ∀ {A n} → Vec A n → Fin n → A

Thiemann Agda 2017-02-24 33 / 38



Finite set type

data Fin : N → Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n → Fin (suc n)

Explanation

Overloading of constructors ok
Fin zero = ∅ (empty set)
Fin (suc zero) = {0}
Fin (suc (suc zero)) = {0, 1}
etc

Interaction time

Thiemann Agda 2017-02-24 34 / 38



Finite set type

data Fin : N → Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n → Fin (suc n)

Explanation

Overloading of constructors ok
Fin zero = ∅ (empty set)
Fin (suc zero) = {0}
Fin (suc (suc zero)) = {0, 1}
etc

Interaction time

Thiemann Agda 2017-02-24 34 / 38



Finite set type

data Fin : N → Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n → Fin (suc n)

Explanation

Overloading of constructors ok
Fin zero = ∅ (empty set)
Fin (suc zero) = {0}
Fin (suc (suc zero)) = {0, 1}
etc

Interaction time
Thiemann Agda 2017-02-24 34 / 38



Splitting a vector

We know this type already . . .

– Pair
data _×_ (A B : Set) : Set where

_,_ : (a : A) → (b : B) → (A × B)

– split a vector in two parts
split : ∀ {A n} → Vec A n → (m : N) → m ≤ n
→ Vec A m × Vec A (sub n m)

Solution introduces a new feature: with matching
This operation can also be defined with Fin . . .

Interaction time

Thiemann Agda 2017-02-24 35 / 38



Splitting a vector

We know this type already . . .

– Pair
data _×_ (A B : Set) : Set where

_,_ : (a : A) → (b : B) → (A × B)

– split a vector in two parts
split : ∀ {A n} → Vec A n → (m : N) → m ≤ n
→ Vec A m × Vec A (sub n m)

Solution introduces a new feature: with matching
This operation can also be defined with Fin . . .

Interaction time
Thiemann Agda 2017-02-24 35 / 38



Plan

1 Prelude

2 Logic

3 Numbers

4 Vectors

5 Going further

Thiemann Agda 2017-02-24 36 / 38



Going further

http://learnyouanagda.liamoc.net/ nicely paced
tutorial, some more background
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=
Main.HomePage definitive resource
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=
Main.Othertutorials with a load of links to tutorials

Thiemann Agda 2017-02-24 37 / 38

http://learnyouanagda.liamoc.net/
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.HomePage
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.HomePage
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials
http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials


Questions?

Thiemann Agda 2017-02-24 38 / 38


	Prelude
	Logic
	Numbers
	Vectors
	Going further

