
P. Thiemann, G. Radanne Wintersemester 2017/18

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Exercise Sheet 3 – Datatypes, Typeclasses

2017-11-22

Exercise 1 (Vectors)
Define a data type for 2D vectors with Double components. Try to specify a Num typeclass instance
for your data type.

Generalize your data type and its operations to support any kind of components. Specify the
type signatures for the operations.

Note: To find the methods used in the Num typeclass, or to quickly search for documentation,
you can use Hoogle (http://www.haskell.org/hoogle/).

Exercise 2 (Monoids)
A typeclass that is used quite often in Haskell programs is Monoid, modeled after the algebraic
structure of the same name: the monoid1. A monoid is a set with an associative operation (mappend
in Haskell) and a neutral element (mzero).

The most prominent Monoid instance are lists, with mappend = (++) and mzero = [].
If possible, try to define monoid instances for the data types in the previous exercises.

Exercise 3 (Vector graphics)
In a vector drawing program, images are not described by their pixels but by the arrangement of
various geometric elements such as circles, Rectangles, lines, Bezier curves, . . . For example, the
following image is “a square with edge length 1 over a triangle with height 1 and base length 1 ”.
In a program, of course, this description needs to be specified.

1. Define a datatype Picture which can describe lines, rectangles, circles and can combine
different pictures. Try to use your datatype to create various pictures. Define at least the
figure shown above and the “House with roof window” shown below.

Does this datatypes forms a monoid? What should be the mappend operation?

2. In order to show pictures, we will use the SVG format thanks to the svg-builder library2.
The SVG format allows to define complex vector pictures and is supported by many viewer
and web browsers. While SVG is very rich, we will only use the path operation. Here is a
simple file that writes a lien from the point (0, 100) to the point (30, 40).

{-# LANGUAGE OverloadedStrings #-}

import Graphics.Svg

myline = path_ [D_ <<- mA 0 100 <> lA 30 40]

svg = doctype <> with (svg11_ myline) [Width_ <<- "100", Height_ <<- "100"]

main = renderToFile "path/to/file" svg

1http://en.wikipedia.org/wiki/Monoid
2https://hackage.haskell.org/package/svg-builder

1

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/
http://www.haskell.org/hoogle/
http://en.wikipedia.org/wiki/Monoid
https://hackage.haskell.org/package/svg-builder


Beware, the origin in SVG is in the upper left corner, like so:

0 x

y

3. Thanks to the Picture datatype, we can represent pictures as values and manipulate them.
For example, we can implement operations for moving and scaling pictures:

move: (Float, Float) -> Picture -> Picture

scale: Float -> Picture -> Picture

Use these operations to create a landscape by combining houses of various scales and position.

Bonus: You can also use a random number generator3 to generate this landscape in a
procedural way.

4. Add a rotation function that takes a rotation center and an angle.

rotate: (Float, Float) -> Float -> Picture -> Picture

Use it to write a recursive function dragon: Integer -> Picture that generates the dragon
curve4. You should only need lines and rotations.

Exercise 4 (Rock–paper–scissors)
A website providing an online Rock–paper–scissors game5 online game has lost its highscore table
in a data center fire. Luckily, the logs of player activity could be saved. Our task is to reconstruct
the highscore table based on the logs.

The data types of the logs and the highscore table are defined in the module LogTypes that
you can find on the lecture homepage. Game events were logged, indicating when a game started
or ended between two participants. Furthermore, changes of choice (rock, paper or scissors) are
recorded for each player. The winner is decided by the current choice of both player at the time of
the “stop” game event.

The highscore table consists of a list of players and the number of their victories ordered in
descending order.

Implement a function reconstructHighScore :: Log -> HighScore, which reconstructs the
highscore table from the logs.

Bonus: What would you do to test this function with QuickCheck ?

3https://hackage.haskell.org/package/random-1.1/docs/System-Random.html
4https://en.wikipedia.org/wiki/Dragon_curve
5https://en.wikipedia.org/wiki/Rock-paper-scissors

2

https://hackage.haskell.org/package/random-1.1/docs/System-Random.html
https://en.wikipedia.org/wiki/Dragon_curve
https://en.wikipedia.org/wiki/Rock-paper-scissors

