
P. Thiemann, G. Radanne Wintersemester 2017/18

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/

Exercise Sheet 6 – First steps with monads - state

2017-12-20

In this exercise, we will be using the state monad. Documentation available at

https://hackage.haskell.org/package/transformers-0.5.5.0/docs/

Control-Monad-Trans-State-Lazy.html

Along with the usual monad operations, the state monad allows to access the state contained in
the monad. For example, the following function increments a counter and returns the old value.

incr :: State Int Int

incr = do n <- get

put (n+1)

return n

You then use the runState function to perform the operations and obtain the final state.

Exercise 1 (Pseudo random number generator)
A common way to generate (pseudo-)random numbers is through the use of a series. For example,
Donald Knuth in the Art of Programming presents the following series:

xn = (6364136223846793005 ∗ xn−1 + 1442695040888963407) mod 264

This style of pseudo-random number generator is known as a linear congruential generator1.
Implement the following API using the traditional State monad operations:

type Random a = State Int a

fresh :: Random Int

runPRNG :: Random a -> Int -> a

Exercise 2 (While – Evaluation)
Implement an interpreter for the miniwhile language presented in Ex05 using a State monad
containing the memory. One could start with the following definitions:

type Value =

type Id = String

type Memory = Map Name Value

eval :: Program -> Memory

Here are some hints to make things simpler:

• First assume that variables always store integer values. At the beginning all variables have
the value 0. (Since the While language also supports Boolean values, you must represent
them as numbers, à la C)

• The module Control.Monad contains many useful functions for programming with Monads.

We will see how to add errors and printing in later exercises.

1https://en.wikipedia.org/wiki/Linear_congruential_generator

1

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2017/
https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-State-Lazy.html
https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-State-Lazy.html
https://en.wikipedia.org/wiki/Linear_congruential_generator

