P. Thiemann, G. Radanne Wintersemester 2019/20

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2019/

Exercise Sheet 4 — High order functions, Functional data structures

2017-06-05

1 High order functions

Exercise 1 (Folding)
Fold is a very common functional programming idiom:

foldr :: (a ->b ->b) —>b ->[a] > b

1. Define foldr.

2. Using foldr, implement:
e or, returns True if at least one item in the list of booleans is true
e filter
e map

e foldl, the left-associative variant of foldr:

foldl :: (b ->a ->b) > b ->[a] > b
foldl acc [] = acc

foldl f acc (x: xs) = foldl f (f acc xs) xs

e remdups, removes consecutive duplicates from a list

Exercise 2 (Unfolding)
There is also a dual function to foldr, unfoldr:

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

Instead of reducing a list to a final result, unfoldr f seed builds a new list: The elements of
the list are created by repeatedly applying the £ function to the accumulator b. If £ b returns
the value Nothing, the list is over. If f b returns the value Just (a, b ’) , then a is added
as the foremost element. The value b ’ is then passed to £ to calculate the next element.

1. Define unfoldr.
2. Using unfoldr, define map.

3. Another standard function of functional programming is iterate :: (a -> a) -> a -> [a]

What could this function do? Implement iterate using unfoldr.

2 Functional data structures

Exercise 3 (Lazy Lists — Hamming numbers)
1. Write a function mergeBy :: Ord a => [a] -> [a] -> [a] which merges two sorted lists
in one sorted list.

2. The Hamming numbers are a sequence of number of the form 2% 37 % 5 for all 4, j, k positive
integers. Define hamming :: [Integer], the infinite lists of sorted Hamming numbers.


http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2019/

Exercise 4 (Tries)

The goal of this exercise is to implement Tries. Tries, or “prefix trees”, are trees where each branch

is indexed by a character. Each path in the trie then represent a list of characters, aka a string.
We consider the following definition of tries, where each node contains a boolean (indicating if

the string considered so far is in the trie) and the branches of the tries represented as a map from

characters to sub-tries.

import qualified Data.Map as Map

data Trie = Trie Bool (Map.Map Char Trie)

1. Implement the following functions:

empty :: Trie

insert :: [Char] -> Trie -> Trie
member :: [Char] -> Trie -> Bool
prefix :: [Char] -> Trie -> Trie
union :: Trie -> Trie -> Trie

ofList :: [[Char]] -> Trie

Which other functions could you implement? Look at the API of Data.Set and Data.Map
for inspiration. You can also derive a few appropriate instances.

2. Is the remove :: [Char] -> Trie -> Trie function easy to write? Write a first naive
version, and consider how you would write one that minimizes the size of the trie after
deletion.

3. Test your implementation using quickCheck. Use the function ofList to generate arbitrary
tries. You can consider tests such as “For any trie t, if I insert something in t, it is now a
member”.

4. Generalize the previous definition of Trie to lists of any elements (not only characters).
Adapt the various function definitions. Do you need a typeclass constraints on the elements?
How much do you need to change your code?

5. We now consider the case of a dictionary-trie, where each “string” (or list) is associated to a
value. How would you change the original definition? Adapt the various function definitions
and your tests.



	High order functions
	Functional data structures

