P. Thiemann, G. Radanne Wintersemester 2019/20

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2019/

Exercise Sheet 6 — First steps with monads - state

2019-06-26
In this exercise, we will be using the state monad. Documentation available at

https://hackage.haskell.org/package/transformers-0.5.5.0/docs/
Control-Monad-Trans-State-Lazy.html

Along with the usual monad operations, the state monad allows to access the state contained in
the monad. For example, the following function increments a counter and returns the old value.

incr :: State Int Int

incr = do n <- get
put (n+1)
return n

You then use the runState function to perform the operations and obtain the final state.

Exercise 1 (Pseudo random number generator)
A common way to generate (pseudo-)random numbers is through the use of a series. For example,
Donald Knuth in the Art of Programming presents the following series:

T, = (6364136223846793005 * 2,1 + 1442695040888963407) mod 264

This style of pseudo-random number generator is known as a linear congruential generator!.
Implement the following API using the traditional State monad operations:

type Random a = State Int a
fresh :: Random Int
runPRNG :: Random a -> Int -> a

Exercise 2 (While — Evaluation)
Implement an interpreter for the miniwhile language presented in Ex05 using a State monad
containing the memory. One could start with the following definitions:

type Value =
type Id = String
type Memory = Map Name Value

eval :: Program -> Memory

Here are some hints to make things simpler:

e You could write separate evaluation functions for statements and expressions. Each evalua-
tion functions will run in the interpreter monad. For instance, we could consider the following
definitions:

type InterpM = State Memory
evalStatement :: Statement -> InterpM ()

e Assume that variables always store integer values. At the beginning all variables have the
value 0. (Since the While language also supports Boolean values, you must represent them
as numbers, a la C)

e The module Control.Monad contains many useful functions for programming with Monads.

We will see how to add errors and printing in later exercises.

"https://en.wikipedia.org/wiki/Linear_congruential_generator

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2019/
https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-State-Lazy.html
https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-State-Lazy.html
https://en.wikipedia.org/wiki/Linear_congruential_generator

