
P. Thiemann, G. Radanne Wintersemester 2019/20

Functional Programming

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2019/

Exercise Sheet 7 – Monads, Monad transformers

2018-07-03

In this exercise, we will be using various other monads and monads transformers available in the
mtl library:

https://hackage.haskell.org/package/mtl

Here is a handy chart1 of some of them:

Standard Monad Transformer Version Original Type Combined Type

Maybe MaybeT Maybe a m (Maybe a)

State StateT s -> (a,s) s -> m (a,s)

Reader ReaderT r -> a r -> m a

Writer WriterT (a,w) m (a,w)

Error ErrorT Either e a m (Either e a)

Cont ContT (a -> r) -> r (a -> m r) -> m r

Table 1: Some monads and their transformers

You will need to import the following modules:

import Control.Monad.Trans

import Control.Monad.Trans.Maybe

import Control.Monad.Trans.Reader

import Control.Monad.Trans.Writer.Strict

Exercise 1 (Computations with protected data)
We want to write a program that manipulates protected data. This means that, in various point
of our program, we might ask the user for their password in order to the data. Of course, access
to the protected data can fail if the password is wrong. For this simple example, we will simply
assume the existence of the following functions.2

data ProtectedData a = ProtectedData String a

accessData :: String -> ProtectedData a -> Maybe a

accessData s (ProtectedData pass v) =

if s == pass then Just v else Nothing

1. Your task is to implement the Protected monad that will ask the password to the user when
trying to access the data, and fail in case of error. The data is stored in a reader monad.

type Protected s a = MaybeT (Reader (ProtectedData s)) a

run :: ProtectedData s -> Protected s a -> Maybe a

access :: String -> Protected a a

1Taken from the Haskell wiki.
2Warning, passwords should never be stored! Only store salted password: https://en.wikipedia.org/wiki/Salt_
(cryptography).

1

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2019/
https://hackage.haskell.org/package/mtl
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Salt_(cryptography)


2. Instead of asking the programmer to enter the password, it would be better to ask the user
directly. Improve your Protected monad like so.

type Protected s a = MaybeT (ReaderT (ProtectedData s) IO) a

run :: ProtectedData s -> Protected s a -> IO (Maybe a)

access :: Protected a a

Exercise 2 (Structured Logging)
The Writer monad (and its transformer) allows to emit some output that will be returned when
the computation run. The type w in the writer is expected to be a monoid, so that messages in
different part of the program can be combined.

Most of the time, logs are just lists of strings. Structured logging allows to introduce sections.
We will consider the following types:

data Item = Msg String

| Section String [Item]

deriving (Show,Eq)

type Log = [Item]

type Logging a = Writer Log a

1. Write the following definitions:

-- ‘log s‘ logs the messages ‘s‘.

log :: Show t => t -> Logging ()

-- ‘with_section s m‘ executes m and add its log in a section titled ‘s‘.

with_section :: String -> Logging a -> Logging a

runLogging :: Logging a -> (a, Log)

Hint: you might use tell and pass.

2. Sometimes, it is useful to have timestamps in logs. For this purpose, we can use the following
haskell functions:

import Data.Time.Clock.POSIX

getPOSIXTime :: IO POSIXTime

Extend the Logging monad to be able to call IO actions. Do you need to change the type of
runLogging?

Extend Item, log and with_section to always register timestamps.

In the case of with_section, you should register two timestamps: one before and one after.
Test your implementation to ensure that you record time correctly, by using System.Posix.Unistd.sleep
for example.

2


