
Prof.Dr. Peter Thiemann

Janek Spaderna
janek.spaderna@pluto.uni-freiburg.de

Winter Term 2022/23
2022-10-21

Functional Programming
http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 1

Exercise 1 (Warming up)

1. Write two functions maxi and mini which compute the maximum and the minimum of two
Integers. Provide type signatures for each function. (Don’t use the predefined min and max,
obviously!)

2. Define two functions max3 and max3Tupled which compute the maximum of three Integers.
max3 should take three arguments, whereas max3Tupled should take a single 3-tuple argu-
ment.

3. Define a function med, which computes the median of three Integers.

4. Test your definitions with QuickCheck properties. Use Data.List.sort as as reference:1

https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-List.html#v:sort

Exercise 2 (Stack calculator)

We will now implement the core of a small stack-based calculator. A stack computer is capable
of using Integers with the following operations: push n, pop, dup, add, subtract, multiply and
neg.

We represent the stack as a list of Integers: [Integer]. The initial stack is infinitely deep and
filled with zeros. This means the following sequence of operations succeeds and results in 8 on top
of the stack:

pop

push 8

add

1. Implement the stack operations as functions that take a stack as their argument and return
the updated stack.

2. Formulate properties about the stack operations and test your functions with QuickCheck.

3. In order to make our stack calculator convenient to use, we want users to be able to provide
textual commands. Implement a function

readCommand :: String -> [Integer] -> [Integer]

which decodes the provided string and calls the appropriate function. An unrecognized
operation should leave the stack unchanged (noop). The exact format of textual commands
is up to you.

Tips:

• Strings are lists of Char, character literals (e. g. ’x’) and string literals (e. g. "ABC") can
be used as patterns.

• The function read can be used to decode a string into a number:
https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#v:read

1On macOS these kinds of links might be broken, depending on your PDF viewer. If so, replace the %23 near the
end with a # in the opened URL, or try to copy the text from the PDF.

1

mailto:janek.spaderna@pluto.uni-freiburg.de
http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-List.html#v:sort
https://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html#v:read


Exercise 3 (List functions)

Implement the following functions (roughly in increasing complexity):

• head, tail, last

• length, and, init

• (++), zip, reverse

Tips:

• All of these functions are defined in Data.List. You can find their documentation here:
https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-List.html

• Don’t be put of by the type signature of, for example, length. You don’t have to understand
what a Foldable is.

• To avoid name clashes you can add a prime to at the end of the names of your functions.
(++’) is not a valid operator, though. Here you could use (+++), for example.

Useful links

• Documentation of the base package:
https://hackage.haskell.org/package/base-4.16.3.0

• Haskell-specific search engine:
https://hoogle.haskell.org

Getting QuickCheck to work

If you want to use stack you can install it via GHCup with the command ghcup install stack.

You start a project by running either stack new NAME or cabal init. The former will create a
new directory NAME the latter will put the files into your current directory.

Add QuickCheck as a dependency by editing either package.yaml (stack) or the .cabal file (don’t
touch the latter when using stack):

package.yaml .cabal file

...

dependencies:

- base

- QuickCheck

...

...

build-depends:

base,

QuickCheck

...

You can also use the code from the lecture as a starting point:
https://github.com/proglang/FunctionalProgramming/tree/master/code2022

2

https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-List.html
https://hackage.haskell.org/package/base-4.16.3.0
https://hoogle.haskell.org
https://github.com/proglang/FunctionalProgramming/tree/master/code2022

