Prof. Dr. Peter Thiemann Winter Term 2022/23

Janek Spaderna Issued 2022-11-25
janek.spaderna@pluto.uni-freiburg.de Discussion on 2022-12-02

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 6

Now that you have learned about I/O in Haskell you can create executables which actually do
interesting things. The last page of the exercise sheet contains a short description how to create
and run executables with stack and cabal.

Exercise 1 (Numbers game)

In the Numbers game, the computer tries to guess a user-selected number between 1 and 100.
Below is an example. Texts in cursive after the > prompt are user input.

Choose a number between 1 and 100!
Is it 507

> greater

Is it 757

> smaller

Is it 627

> smaller

Is it 567

> yes

I won in 4 attempts!

Implement this game using I0 actions and do notation. A set of predefined IO actions in the
Prelude is documented in section Simple 1/O operations.

Exercise 2 (Stack calculator interface)

In the first exercise sheet we implemented a simple stack calculator. This calculator was missing
a crucial component: a command line interface!

Using I0 extend your calculator with a command line interface. Each line read from the user
(e.g. “push 3” or “add”) should correspond to a command executed in the calculator. Display the
stack after each step. “exit” should terminate the program

Exercise 3 (Simple grep)

The command line tool grep is a near irreplaceable utility on *nix systems.! The goal of this
exercise is to write a very basic Haskell version of the “fixed-strings” mode: patterns are interpreted
not as regular expressions but are searched for literally. On many systems this mode is available
either through invoking fgrep or by providing the -F flag to grep.

1. Write a function contains :: String -> String -> Bool to check whether a string con-
tains a given pattern. Order the parameters such that s1 ~contains™ s2 has the naturally
expected behaviour. Test your implementation using QuickCheck.

2. Write the function grepString :: Bool -> String -> String -> String which filters
the lines in the second string based on the first string parameter, the search string. The
Bool parameter indicates if matched or unmatched lines should be kept.

Note Take a look at the 1ines and unlines functions defined in the Prelude. It is possible
to write grepString without mentioning the third parameter by name.

"https://www.man7.org/linux/man-pages/mani/grep.1.html


mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://hackage.haskell.org/package/base-4.16.3.0/docs/Prelude.html
https://hackage.haskell.org/package/base-4.16.3.0/docs/Prelude.html#g:26
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/ex01.pdf
https://hackage.haskell.org/package/base-4.16.3.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base-4.16.3.0/docs/Prelude.html#v:unlines
https://hackage.haskell.org/package/base-4.16.3.0/docs/Prelude.html
https://www.man7.org/linux/man-pages/man1/grep.1.html

3. Write the main action. It should parse the arguments, read and filter the input, and finally
write the result back to the terminal.

You can access the command line arguments through getArgs from System.Environment.
In short, your program should follow this synopsis:

usage: ... [-v] pattern [file]

If the -v flag is present, inverted mode should be activated, and if no file is given the input
should be read from standard input. The System.Exit module provides functions to abort
with a non-zero exit code.

Note If you want to test your executable from GHCi you should use the :main command
instead of running the main action: The former lets you specify command line arguments,
whereas you have to jump through some hoops to provide these using the latter form.


https://hackage.haskell.org/package/base-4.16.3.0/docs/System-Environment.html#v:getArgs
https://hackage.haskell.org/package/base-4.16.3.0/docs/System-Environment.html
https://hackage.haskell.org/package/base-4.16.3.0/docs/System-Exit.html

Creating Executables

You can have multiple executables per project. The configuration looks a bit different between
cabal and stack. As usual, only modify the *.cabal file if you're using cabal, and only modify
package.yaml if you're using stack.

cabal

executable example
main-is: Main.hs
other-modules:
M1
M2.A
build-depends:
base,
QuickCheck,
hs-source-dirs: exe
default-language: Haskell2010

This describes an executable named example whose source code lives in the exe directory (relative
to the .cabal file) and requiring the base and QuickCheck libraries.

The main action should be defined in exe/Main.hs. Additional code lives in the files exe/M1.hs
and exe/M2/A.hs.

You can run your executable using cabal run example -- args...

If you have multiple executables you may want to start a GHCi session in the context of a specific
one: cabal repl example

Refer to the cabal package description documentation for more information.

stack

executables:
example:
main: Main.hs
source-dirs: exe
dependencies:
- base
- QuickCheck

This describes an executable named example whose source code lives in the exe directory (relative
to the package.yaml file) and requiring the base and QuickCheck libraries. Any dependencies
declared on the top-level are inherited.

The main action should be defined in exe/Main.hs. Additional modules can live inside the source
directory and its subdirectories and don’t need to be listed.

You can run your executable using stack run example -- args...

If you have multiple executables you may want to start a GHCIi session in the context of a specific
one (note the leading colon!): stack ghci :example

Multiple executables should be defined inside one executables: block. Refer to the hpack doc-
umentation (specifies how the YAML file gets turned into a .cabal file) and the cabal package
description documentation for the meaning of the fields.


https://cabal.readthedocs.io/en/stable/cabal-package.html
https://github.com/sol/hpack/tree/0.35.0#hpack-a-modern-format-for-haskell-packages
https://github.com/sol/hpack/tree/0.35.0#hpack-a-modern-format-for-haskell-packages
https://cabal.readthedocs.io/en/stable/cabal-package.html
https://cabal.readthedocs.io/en/stable/cabal-package.html

