
Prof. Dr. Peter Thiemann

Janek Spaderna
janek.spaderna@pluto.uni-freiburg.de

Winter Term 2022/23

Issued 2022-12-04
Discussion on 2022-12-09

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 7

To help you with writing and understanding your first monad instances download SimplePrelude.hs
linked on the course homepage. It contains an alternative, simplified Monad typeclass. You can
find usage instructions at the top of the file.

Exercise 1 (Non-determinism)

The goal of this exercise is to implement a solver for the N-Queens problem: how can n chess
queens be placed on an n × n chess board, such that no queen can attack any other queen.

We will implement this using the list monad which allows for a straightforward, if not always
very efficient, formulation of backtracking search. Start from NQueens.hs linked on the course
homepage. It defines how solutions should be represented and functions to visualize them.

1. Extend SimplePrelude.hs with the Monad instance for lists. You can find the definition on
the lecture slides.

2. Write a function guard :: Bool -> [()]. Its effect is a filter on the set of results. It should
fulfill the following properties:

prop_guardTrue, prop_guardFalse :: [Integer] -> [Integer] -> Bool
prop_guardTrue xs ys = (xs >> guard True >> ys) == (xs >> ys)
prop_guardFalse xs ys = (xs >> guard False >> ys) == []

Note The module Control.Monad contains a more generic version of guard. It makes use
of an abstraction we will learn about in a future lecture.

3. Implement the nqueens function using the list monad and backtracking search.

4. Verify that your solution is lazy enough; i. e. materializing only the first solution using
head (nqueens 11) should run considerably faster than exhausting the complete search
space with length (nqueens 11).

Exercise 2 (This monad, that monad)

Values of type Either a b carry either a value of type a or a value of type b. The These type is
related. Its values contain either an a, a b, or a combination of a and b:

data These a b = This a | That b | These a b

It is available from the these package. However, the goal is to write the Monad instance yourself.
For this, copy the definition above into your Haskell file rather than using the ‘these’ library.

1. Write the Monad instance for These. It should behave as a combination of generalized Trace
and Raise effects, which were discussed in the last lecture.

2. Write an Arbitrary instance for These. You only have to provide the arbitrary function
but implementing shrink can help by producing smaller counterexamples. If you wish to do
so, shrink should derive a list “smaller” values from a given value by calling shrink on the
subcomponents. You can make use of the list monad for this.

3. Test your Monad instance. Write three property tests, each verifying one of the monadic laws.
Use values of type These [Integer] Integer for your tests.

1

mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://github.com/proglang/FunctionalProgramming/raw/master/code2022/src/SimplePrelude.hs
https://en.wikipedia.org/w/index.php?title=N_Queens
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/NQueens.hs
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Monad.html
https://hackage.haskell.org/package/these-1.1.1.1

Exercise 3 (Evaluation)

The file MiniLang.hs linked on the course homepage provides data types which model a small pro-
gramming language. The goal of this exercise is to write an interpreter using the State monad.

The program’s memory should be represented by a Map (from Data.Map.Strict in the containers
library) from variable names of type Var to Integer values. All variables are initially zero. Results
from boolean expressions have to be represented as numbers as well, à la C.

1. Extend MiniLang.hs with the definition of the State monad from the lecture. Additionally,
write functions to retrieve and update variable values:

getVar :: Var -> State Memory Integer
setVar :: Var -> Integer -> State Memory ()

2. Write a functions to evaluate expressions, statements and whole programs. They should all
make use of the State monad.

3. Write a function to run programs. Its type should be Prog -> Memory. Test your code; the
file contains a program to sum the integers in a closed range [a, b].

2

https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/MiniLang.hs
https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Map-Strict.html
https://hackage.haskell.org/package/containers-0.6.5.1

