
Prof. Dr. Peter Thiemann

Janek Spaderna
janek.spaderna@pluto.uni-freiburg.de

Winter Term 2022/23

Issued 2022-12-12
Discussion on 2022-12-16

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 8

Exercise 1 (Template rendering)

The file Template.hs linked on the course homepage contains the definition of the Template data
type. A web server, for example, might contain a template rendering engine to produce dynamic
HTML. The engine would parse the template file into a representation similar to Template.

The goal of this exercise is to write a rendering function, that is a function to turn Template
values into Strings. The renderer will make use of the function arrow monad (->) e.1 The type
variable e stands for an environment which is passed to each computation. This monad is also
called the reader monad.

1. Write the supporting functions

lookupVariable :: String -> Environment -> Maybe String
lookupTemplate :: String -> Environment -> Maybe Template
updateVariables :: [(String, String)] -> Environment -> Environment

Which of these functions can be used as actions inside the (->) Environment monad? How
many arguments do they have to be applied to to become valid actions?

2. A reader monad does not keep state between consecutive actions. But we can write a function
to adapt an action so that it receives a modified environment. Write the function

local :: (e -> e') -> (e' -> a) -> (e -> a)

Rewrite the second argument’s arrow to prefix form. Do the same for the return type.

3. Implement the two functions

resolveDef :: Definition -> Environment -> (String, String)
resolve :: Template -> Environment -> String

Write these using the (->) Environment monad. That is, don’t bind the Environment
argument to a variable.

Exercise 2 (Joining monads)

In the future we will be able to give a different, but equally powerful, definition for monads using
join from Control.Monad and another function we will learn later. join has some interesting
properties by itself:

1. Implement join :: Monad m => m (m a) -> m a.

2. What type do you get when you instantiate m to some function monad? How does the result
behave? Write QuickCheck properties to demonstrate.

3. What is the type and behaviour of join (.)? Write QuickCheck properties to demonstrate.

1The arrow operator -> has a prefix form just like any other operator in Haskell. The type e -> a is equivalent to
the type (->) e a. If we’re talking about the monad, as we do here, we have to use the latter version so that we
can construct a type of kind * -> *.

1

mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/Templates.hs
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Monad.html#v:join
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Monad.html
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Monad.html#v:join


Exercise 3 (Random number generator)

A common way to generate pseudo-random numbers is through the use of a series. For example,
Donald Knuth in The Art of Computer Programming presents the following series:

xn = (6364136223846793005 ∗ xn−1 + 1442695040888963407) mod 264

This style of a pseudo-random number generator is known as a linear congruential generator.

It can easily be implemented using a state monad. Instead of writing our own type and in-
stances we will now make use of a library which provides everything we need. Add the trans-
formers package to your dependencies. You can find the State monad and its documentation in
Control.Monad.Trans.State.Strict. For example, to increment the state and return the old
value we can write

incr :: State Integer Integer
incr = do

n <- get
put (n + 1)
return n

Use the above formula to implement the following API:

type Random a = State Integer a
fresh :: Random Integer
runPRNG :: Random a -> Integer -> a

2

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://hackage.haskell.org/package/transformers-0.5.6.2
https://hackage.haskell.org/package/transformers-0.5.6.2
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-State-Strict.html

