
Prof. Dr. Peter Thiemann

Janek Spaderna
janek.spaderna@pluto.uni-freiburg.de

Winter Term 2022/23

Issued 2022-12-19
Discussion on 2023-01-13

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 9

On this sheet we will explore the difference between Applicative and Monad. More specifically,
we will investigate one data type which admits two different Applicative instances. One of those
can be extended to a law-abiding Monad instance. The other one, however, does not admit such
an instance. The exercises on this sheet are designed to guide you through that process.

Start from the two datatypes below. They are isomorphic to each other but we will give their
Applicative instances different semantics.

data Validation e a = VFail e | VOk a
data Error e a = EFail e | EOk a

Exercise 1 (Functor instances)

First, define Functor instances for both Validation and Error.

Test your implementation by writing properties for the functor laws:

Identity fmap id == id
Composition fmap (f . g) == fmap f . fmap g

Exercise 2 (Validation applicative)

Implement the Applicative instance for Validation. It should accumulate all the errors according
to a Semigroup instance. For example, this property should hold:

prop_ValidationAccumulatesErrors es a es' =
(VFail es <*> VOk a <*> VFail es') == VFail (es ++ es')

Test your implementation by writing properties for the Applicative laws:

Identity pure id <*> v == v
Composition pure (.) <*> u <*> v <*> w == u <*> (v <*> w)

Homomorphism pure f <*> pure x == pure (f x)
Interchange u <*> pure y == pure ($ y) <*> u

Exercise 3 (Error applicative)

Implement the Applicative instance for Error. The (<*>) operator should return EFail if any of
the two branches evaluate to EFail. More specifically, evaluation should short-circuit if evaluation
of the first branch results in a failure:

prop_ErrorShortCircuits e m = (EFail e <*> m) == EFail e

Again, test your implementation by writing properties for the Applicative laws.

Note If your properties from Exercise 2 are general enough you should be able to adapt them by
changing only the names and replacing Validation in the type signatures with Error.

1

mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/


Exercise 4 (A Monad instance)

Try to write Monad instances for Validation and Error. (Because we are now using the Monad
class from the Prelude only a definition of the bind operator (>>=) is required. By default return
is the same as pure—as is required by a law.)

Write properties to test that

(a) the instance satisfies the Monad laws

Left identity return a >>= k == k a
Right identity m >>= return == m
Associativity m >>= (\x -> k x >>= h) == (m >>= k) >>= h

(b) the Monad and Applicative operations relate correctly

m1 <*> m2 == m1 >>= (\x1 -> m2 >>= (\x2 -> return (x1 x2)))

Describe, why one of the Monad instances is not law-abiding. But can you give an argument why
that non-conforming instance might be considered a valid instance as well?

2


