
Prof. Dr. Peter Thiemann
Janek Spaderna
janek.spaderna@pluto.uni-freiburg.de

Winter Term 2022/23
Issued 2023-01-15

Discussion on 2023-01-20

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 10

Download the file Parser.hs from the lecture page. It contains a parser module similar to the one
developed during the lecture.

The Parser type is equipped with Functor, Applicative and Monad instances. The primitive
operations such as pmap are not exported. Use the typeclass functions like fmap instead.

Additionally, there is an instance for Alternative. It provides the function empty corresponding
to pempty, and the operator (<|>) corresponding to palt. Through the Alternative instance the
functions some and many are available. Read their documentation to learn what they do and what
their differences are.

Exercise 1 (Parser combinators)

Define the combinators described below. Do not rely on the Parser type’s internal representation;
i. e. use only the operations exported from Parser.hs. (Functions from other modules, such as
Control.Monad for example, may of course be used.)

• psepby :: Parser t r -> Parser t sep -> Parser t [r]
psepby1 :: Parser t r -> Parser t sep -> Parser t [r]

p `psepby` s accepts p zero or more times. Instances of p have to be separated by s.

p `psepby1` sep requires at least one occurence of p

• ppali :: Parser t r -> Parser t [r]

ppali p accepts palindromes that consist of elements accepted by p. If you have trouble
defining ppali try your hand first at

ppaliAB :: Parser Char String

which should accept palindromes consisting of 'A' and 'B'.

• pcounted :: Parser Char r -> Parser Char [r]

pcounted p parses an integer n followed by n instances of p. For example

exParser (pcounted (lit 'a')) "3aaaaa" == [("aaa", "aa")]

1

mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/Parser.hs
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Applicative.html#t:Alternative
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Applicative.html#v:some
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Applicative.html#v:many
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/Parser.hs
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Monad.html

Exercise 2 (MiniLang parser)

The goal of this exercise is to write a parser for the language MiniLang from exercise sheet 7. The
grammar is specified below. Terminal symbols are either literals in single quotes (for example,
'if') or regular expressions in double quotes (for example, "[0-9]+").

stmts ::= stmt ';' stmts
| stmt

stmt ::= 'while' exp 'do' stmts 'done'
| id ':=' exp

exp ::= 'if' exp 'then' exp
'else' exp 'fi'

| aexp cmp aexp
| 'not' exp
| aexp

aexp ::= num
| id
| '(' aexp op aexp ')'

cmp ::= '<' | '='
op ::= '+' | '-' | '*' | '/'
num ::= "[0-9]+"
id ::= "[a-zA-Z][a-zA-Z0-9]*"

For example, a program in the language may look like this:

x := 0; y := 5;
while x < 10 do

y := (y * 5); x := (x + 1)
done;
y := if y > 10000 then 10000 else y fi

1. First, write a lexer, or also called a tokenizer. It is a parser of type Parser Char Token. The
file MiniLangParser.hs linked on the lecture home page contains basic definitions to get you
started. In particular, implement the ptoken parser.

Note Be careful in your handling of keywords and identifiers: find should be tokenized as
one identifier instead of keyword fi and identifier nd.

2. Write parsers for the non-terminals. For example, the parser for the non-terminal exp should
have type Parser Token MiniLang.Expr.

Because we first parse the input into a list of tokens, we don’t have to worry about, for
example, white space in these parsers and can instead focus on the grammar.

3. Combine your lexer and the parsers from step 2 into a function

parseProgram :: String -> Maybe MiniLang.Prog

Exercise 3 (MiniLang frontend)

Write an executable mini-lang to parse and execute a MiniLang program. Use the parser from
exercise 2 and the interpreter from sheet 7.

The executable should read the program source code from the standard input. Command line
arguments of the form var =value should initialize the program memory. (Unspecified variables
should still default to 0.) Print the program memory after execution to the terminal.

2

https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/MiniLangParser.hs

