
Prof. Dr. Peter Thiemann

Janek Spaderna
janek.spaderna@pluto.uni-freiburg.de

Winter Term 2022/23

Issued 2023-01-23
Discussion on 2023-01-27

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 11

Please take 10 minutes to fill in the evaluation.

1 Monad Transformers

In this part of the exercise we will use various monads and monad transformers from the transformers
library. Below is a handy table relating the “standard version” of the monads you know with the
transformer versions.

Standard Monad Transformer Base Type Combined Type

Maybe MaybeT Maybe a m (Maybe a)
Either ExceptT Either e a m (Either e a)

Reader ReaderT r -> a r -> m a
Writer WriterT (a, w) m (a, w)
State StateT s -> (a, s) s -> m (a, s)

RWST combines Reader, Writer, State

It is a very common occurrence with monad stacks that you have to embed an IO computation. It
is possible to nest multiple calls to lift but the MonadIO class from base offers a more ergonomic
interface. A single call to liftIO lifts an IO action into any transformer stack.

Exercise 1 (Computations with protected data)

We want to write a program that manipulates password protected data. In order to access the data,
the user has to provide their password. Of course, access can fail if the password is wrong.

Assume the following interface to the data. (In practice, passwords should never be stored in plain
text but only salted and hashed!)

type Password = String

newtype ProtectedData a = ProtectedData (Password -> Maybe a)

accessData :: Password -> ProtectedData a -> Maybe a
accessData pw (ProtectedData tryAccess) = tryAccess pw

1. Implement run and access for the monad stack Protected.

type Protected s = MaybeT (Reader (ProtectedData s))

run :: ProtectedData s -> Protected s a -> Maybe a

access :: Password -> Protected s s

2. Instead of having to provide the password to every call of access we want to integrate with the
IO monad to ask the user for their password and remember it so that the user is asked at most
once.

Write a new type alias ProtectedIO and implement runIO for the adjust transformer stack.

1

mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://hackage.haskell.org/package/transformers-0.5.6.2
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Maybe.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Except.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Reader.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Writer.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-State.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-RWS.html
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html#v:lift
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Monad-IO-Class.html#t:MonadIO
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Monad-IO-Class.html#v:liftIO


3. Write a function embed to turn a Protected s a computation into a ProtectedIO s a compu-
tation.

4. Implement accessIO with the behaviour specified above.

Exercise 2 (Structured Logging)

With the Writer monad and its transformer actions can emit output. Output from multiple actions
is automatically combined using the Monoid instance.

In this exercise we will use the Writer monad to accumulate log messages. However, we will not
only collect a list of strings but provide a functions to structure them into sections. In a second
step we will extend our logging functions to include time stamps. For this you will have to include
the time library in your package dependencies.

We start from this basic structure of our log. It is generic over the type of messages and how we
label sections.

data Item s m = Msg m | Section s [Item s m]
deriving (Show)

type Log s m = [Item s m]

type Logging s m = Writer (Log s m)

1. Implement these functions:

-- Log a single message.
log :: m -> Logging s m ()

-- Group the nested messages in a section.
section :: s -> Logging s m a -> Logging s m a

-- Extract the final result with the log messages.
runLogging :: Logging s m a -> (a, Log s m)

2. To annotate all messages with time stamps we use

type StampedLog s m = [Item (UTCTime, s, UTCTime) (UTCTime, m)]

Import Data.Time to get access to all time-related functionality required for this exercise. The
current time can be retrieved using getCurrentTime.

To be able to use getCurrentTime we have to adjust the monad stack because getCurrentTime
runs in the IO monad. Define the type synonym StampedLogging with a suitable adjusted
monad stack.

Implement versions of log, section and runLog using time stamps. The adjusted version of
section should include two time stamps: one taken before executing nested computation, one
after. You can test your implementation by using threadDelay.

2

https://hackage.haskell.org/package/time-1.9.3
https://hackage.haskell.org/package/time-1.9.3/docs/Data-Time.html
https://hackage.haskell.org/package/time-1.9.3/docs/Data-Time-Clock.html#v:getCurrentTime
https://hackage.haskell.org/package/base-4.16.3.0/docs/Control-Concurrent.html#v:threadDelay


2 GADTs

In this second part we will work with GADTs. This requires the language extension of the same
name. Add this line at the top of your file:

{-# LANGUAGE GADTs #-}

Exercise 3 (Safe Lists)

Using head with lists in Haskell can lead to hard-to-debug errors. If the argument is a empty list
the function will throw an exception at run time.

1. Define a list-like data structure called SafeList which supports a “safe” head operation. “Safe”
in this context means that invalid inputs don’t crash the program. Instead, the type checker
should reject calls to safeHead with an empty SafeList as the argument. Additionally, write a
corresponding safeLast function.

safeHead (Cons 2023 Nil) -- ok
safeHead Nil -- type error

2. Write a function safeAppend. Ensure that applying safeHead to the result of appending two
empty lists gives a type error. But what other troubles are not able to resolve?

3


	Monad Transformers
	GADTs

