
Prof. Dr. Peter Thiemann

Janek Spaderna
janek.spaderna@pluto.uni-freiburg.de

Winter Term 2022/23

Issued 2023-01-30
Discussion on 2023-02-03

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 12

1 Monad Transformers

The mtl package builds upon the transformers library used in last week’s exercise sheet. Instead of
programming against concrete a concrete transformer stack the programmer specifies the function’s
requirements in the type signature. The consumer is then able to choose the underlying monad
stack themselves. We can extend last week’s table by an “interface” column.

Standard Monad Transformer Interface Base Type Combined Type

Maybe MaybeT Maybe a m (Maybe a)
Either ExceptT MonadError Either e a m (Either e a)

Reader ReaderT MonadReader r -> a r -> m a
Writer WriterT MonadWriter (a, w) m (a, w)
State StateT MonadState s -> (a, s) s -> m (a, s)

RWST MonadRWS combines Reader, Writer, State

Exercise 1 (File system state)

The goal of this exercise is to write a monad transformer which implements the MonadState
interface by writing the state to the file system instead of, like StateT, keeping the state in the
program memory and passing it from one action to the next.

1. Define a monad transformer FileStateT including the run... function. The path from which
state is read/to which it is written should not be hardcoded but specified as an argument.
Implement the customary typeclasses (e. g. Functor, ..., MonadIO, MonadTrans).

2. Implement the MonadState interface. All types which implement Read and Show should be
supported.

Note Due to Haskell’s laziness you will have to use System.IO.readFile' for reading the
file instead of readFile from the Prelude. A get would otherwise lock the file until the
returned value has been forced. An expression such as get <* put 1 would result in a
run-time error.

3. Your transformer should support the other interfaces (MonadReader, etc.) if the transformed
monad supports these. Write corresponding instances.

4. Write a function memoizingFib :: MonadState (Map Integer Integer) to calculate the
n-th Fibonacci number. Use the MonadState constraint to memoize intermediate results.

5. Given memoizingFib two different interpretations. One using the ordinary state transformer,
and one using this exercise’s FileStateT. The latter should check if the file storage exists
and initialize it to the empty map if not.

1

mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://hackage.haskell.org/package/mtl-2.2.2
https://hackage.haskell.org/package/transformers-0.5.6.2
https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Maybe.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Except.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Error-Class.html#t:MonadError
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader-Class.html#t:MonadReader
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer-Class.html#t:MonadWriter
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Class.html#t:MonadState
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-RWS.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-RWS-Class.html#t:MonadRWS
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Class.html#t:MonadState
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Class.html#t:MonadState
https://hackage.haskell.org/package/base-4.16.3.0/docs/System-IO.html#v:readFile-39-
https://en.wikipedia.org/wiki/Fibonacci_number


Table 1: Stack calculator operations
Operation Description
Noop Leaves the stack unchanged
Pop Discards the stack’s top element
Push v Put’s the value v on top of the stack

Dup Duplicates the topmost value
Dip p Executes p without the topmost value on the stack
Swap Swaps the two topmost values

Add Performs the arithmetic operation
Neg

LessEq Performs the comparison operation

Not Performs the logical operation
And

p1 :& p2 Sequences programs p1 and p2
If pT pF Executes pT if True is on top of the stack and pF otherwise
While p Executes p repeatedly as long as it leaves True on top of the stack

2 GADTs

Exercise 2 (Type safe stack calculator)

We previously implemented a simple stack calculator. It only supported arithmetic operations and
always returned 0 on underflow. We now want to extend it with logical operations and disallow
programs which underflow the stack. Additionally, there should be no coercion between integer
values and booleans.

1. Table 1 lists the operations we want to support. Define the data type SProg to represent
programs consisting of these operations. Use a GADT to ensure type safety. More specifically,
the state of the stack before and after the operation should be tracked in the type.

2. Implement a tag-free interpreter for SProg.

3. Define an expression dup2 to duplicate the two values on top of the stack using only the basic
operations from Table 1. Use it to write an SProg expression to calculate the maximum of
two numbers. Write a property test.

2


	Monad Transformers
	GADTs

