Prof. Dr. Peter Thiemann Winter Term 2022/23

Janek Spaderna Issued 2023-02-05
janek.spaderna@pluto.uni-freiburg.de Discussion on 2023-02-10

Functional Programming
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/

Exercise Sheet 13

Download ALaCarte.hs linked on the lecture page. It contains most of the definitions from the
two Datatypes a la carte lectures.

Exercise 1 (Arbitrary a la carte)

Write Arbitrary instances for the types (f :+: g) a and Mu f (of course restricted by suitable
constraints) and the expression functors (Vale, Adde, ...). The naive implementation for (:+:)
is heavily biased towards the left. For example, for a type like Fy :+: (Fo :+: (F3 :+:F4)) O it
produces (on average) twice as many values from Fy as from F;. Your implementation should do
better.

Hint This involves writing and implementing a custom typeclass to, for example, collect all
potential generators before applying a combinator such as oneof.

Bonus In an unfortunate case of bad luck the generator could return infinitely large trees. Put
safeguards in place to limit the maximum recursion depth. QuickCheck provides getSize, resize,
and similar functions. How the user makes use of the size parameter is mostly up to them. A
greater size, however, should in general lead to a larger result.

Exercise 2 (Partial rewriting)

Using the technique from Datatypes d la carte our datatypes are built from small building blocks.
This representation lends itself for a step-by-step rewriting of the tree. For example, think of a data
structure which is refined during the program’s execution with additional data; or some constructors
are replaced by combinations of others to reduce the overall amount of cases to consider in later
stages of the program.

1. Define functors to represent a simple functional language consisting of

e variables

o function application
¢ lambda abstraction
o let bindings

2. We consider let-bindings as syntax sugar, which we don’t want to handle at every point in
our program. Luckily, an expression let z = e; in e, can be rewritten as a combination
of application and abstraction: (Az. ey) ey.

Implement the function rewriteLets :: ... => Mu (Let :+: f) -> Mu f, which per-
forms this rewrite step. (Where Let is the functor representing let-bindings.)

For the next step we need some additional background. There are two typeclasses in the base
library which haven’t made an appearance yet: Foldable and Traversable. They build upon
Functor orthogonally to Applicative and Monad.

A Foldable instance is characterised by its foldMap function. For a parameterized datatype F a
it combines every occurrence of a into one final value—or as the documentation puts it

The Foldable class represents data structures that can be reduced to a summary value
one element at a time.


mailto:janek.spaderna@pluto.uni-freiburg.de
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/
https://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2022/ex/ALaCarte.hs
https://hackage.haskell.org/package/QuickCheck/docs/Test-QuickCheck.html#v:getSize
https://hackage.haskell.org/package/QuickCheck/docs/Test-QuickCheck.html#v:resize
https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-Foldable.html#t:Foldable
https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-Traversable.html#t:Traversable
https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-Foldable.html#v:foldMap

The Traversable class is explained as follows:

Traversable structures support element-wise sequencing of Applicative effects (thus
also Monad effects) to construct new structures of the same shape as the input.

To illustrate what is meant by same shape, if the input structure is [a], each output
structure is a list [b] of the same length as the input. If the input is a Tree a, each
output Tree b has the same graph of intermediate nodes and leaves. Similarly, if the
input is a 2-tuple (x, a), each output is a 2-tuple (x, b), and so forth.

It is in fact possible to decompose a traversable structure t a into its shape (a. k. a. spine)
of type t () and its element list [a]. The original structure can be faithfully recon-
structed from its spine and element list.

From the Overview section in Data.Traversable. Read more there.

3. Define Foldable and Traversable instances for the (:+:) combinator and the syntax
functors.

Hint If you have trouble understanding the involved type signatures or can’t make sense of
the operations look at the concrete cases and let yourself be guided by the types.

4. Using these prerequisits write a function to perform the annotation of abstraction nodes
described above. That is, replace abstraction nodes with new nodes containing an additional
piece of information. It should indicate whether the variable bound by this abstraction is
used inside its body.

Exercise 3 (Free monads cut off)

Using free monads we have access to the sequence of monadic actions and can manipulate them
before we begin evaluating. In this exercise you will write a function cutoff. Given an integer n
it will transform a Term f a to evaluate to Nothing if the computation does not complete after
interpreting at most n operations. If the computation does complete, the result should be returned
wrapped in Just.

Implement cutoff :: Functor f => Integer -> Term f a -> Term f (Maybe a).

Some properties it should satisfy:

<=
>

prop_cutoff0 nt=
prop_cutoffPure n a

==> cutoff n t == return Nothing

n
n ==> cutoff n (return a) == return (Just a)

0
0



https://hackage.haskell.org/package/base-4.16.3.0/docs/Data-Traversable.html#g:4

