
Functional Programming Languages

Prof. Dr. Peter Thiemann and Prof. Dr. Stefan Wehr

Universität Freiburg

November 2022

Functional Programming Languages 1 / 127

Signatures

Definition
A signature Σ is a set of function symbols, where each
f ∈ Σ is associated with a natural number n called the
arity of f .
Σ(n) denotes the set of all n-ary elements of Σ.
The elements of Σ(0) are also called constant symbols.

Functional Programming Languages 7 / 127

Example

Signature Σpred for predicate logic

Σpred = {T(0),F(0),¬(1),∧(2),∨(2)}
Σ

(0)
pred = {T,F}

Σ
(1)
pred = {¬}

Σ
(2)
pred = {∧,∨}

Functional Programming Languages 8 / 127

Terms

Definition
Let Σ be a signature and X a set of variables such that
Σ ∩ X = ∅. The set T (Σ,X) of all Σ-terms over X is
inductively defined as

X ⊆ T (Σ,X),
for all n ∈ N, all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ,X), we
have f (t1, . . . , tn) ∈ T (Σ,X)

Note:
For a constant symbol f ∈ Σ(0), we often write the term
f () as f .
From now on, we leave to variable set
X = {x , x1, x2, . . . , y , y1, y2, . . . , z, z1, z2 . . . } implicit

Functional Programming Languages 9 / 127

Example

Suppose Σ = Σpred . Then

∨(¬(x42),∧(T, x3)) ∈ T (Σ,X)

Alternative notations
Polish notation: ∨¬ x42 ∧ T x3

Prefix notation as in Scheme: (∨ (¬ x42) (∧T x3))

Infix notation (with implicit operator precedence):
¬x42 ∨ T ∧ x3

Tree notation

Functional Programming Languages 10 / 127

Example

Suppose Σ = Σpred . Then

∨(¬(x42),∧(T, x3)) ∈ T (Σ,X)

Alternative notations
Polish notation: ∨¬ x42 ∧ T x3

Prefix notation as in Scheme: (∨ (¬ x42) (∧T x3))

Infix notation (with implicit operator precedence):
¬x42 ∨ T ∧ x3

Tree notation

Functional Programming Languages 10 / 127

Unique Decomposition of Terms

Lemma
Let t , s ∈ T (Σ,X) with t = f (t1, . . . , tn) and s = g(s1, . . . , sm).
If t = s then f = g, n = m, and ti = si for all i ∈ {1, . . . , n}.

Proof. Clearly, f = g and t1 . . . tn = s1 . . . sm. We prove
n = m and ti = si by induction on the length k of w = t1 . . . tn.

Induction basis: k = 0, so nothing is to prove.
Induction step: Suppose k > 0. Then w = aw ′.

If a ∈ X then t1 = a = s1 and t2 . . . tn = s2 . . . sm. The IH
yields n = m and ti = si for 2 ≤ i ≤ m.
If a ∈ Σ(p) then t1 = a(t ′1, . . . , t

′
p) and s1 = a(s′1, . . . , t

′
p).

From the assumption t1 . . . tn = s1 . . . sm we get
t ′1 . . . t

′
pt2 . . . tn = s′1 . . . s

′
ps2 . . . sm. The IH now yields

n = m and ti = si for 2 ≤ i ≤ n and t ′j = s′j for 1 ≤ j ≤ p.
Hence, we also have t1 = s1.

Functional Programming Languages 11 / 127

Positions and Size of Terms

Definition
Suppose t ∈ T (Σ,X).

The set of positions of term t is a set Pos(t) of strings
over the alphabet of natural numbers. It is inductively
defined as follows:

If t = x ∈ X , then Pos(t) := {ε}
If t = f (t1, ..., tn), then

Pos(t) := {ε} ∪
n⋃

i=1

{ip|p ∈ Pos(ti)}

The position ε is called the root position of t , the function
or variable at this position is called the root symbol of t.
The size |t | of t is the cardinality of Pos(t).

Functional Programming Languages 12 / 127

Ordering Positions

Definition
We define an ordering � ⊆ Pos(t)× Pos(t) inductively by

ε � p, for all p;
ip � jq, if either i < j or i = j and p � q.

(lexicographic ordering)

Functional Programming Languages 13 / 127

Subterms and Replacing

Definition (Subterm)
For p ∈ Pos(t), the subterm of t at position p, denoted by
t |p, is defined by induction on the length of p:

t |ε := t
f (t1, . . . , tn)|ip:= ti |p

(ip ∈ Pos(t) implies that t = f (t1, . . . , tn) with 0 ≤ i ≤ n.)

Definition (Replacing)
For p ∈ Pos(t), we denote by t [s]p the term that is obtained
from t by replacing the subterm at position p by s, i.e.

t [s]ε := s
f (t1, . . . , tn)[s]ip:= f (t1, ..., ti [s]p, . . . , tn)

Functional Programming Languages 14 / 127

Subterms and Replacing

Definition (Subterm)
For p ∈ Pos(t), the subterm of t at position p, denoted by
t |p, is defined by induction on the length of p:

t |ε := t
f (t1, . . . , tn)|ip:= ti |p

(ip ∈ Pos(t) implies that t = f (t1, . . . , tn) with 0 ≤ i ≤ n.)

Definition (Replacing)
For p ∈ Pos(t), we denote by t [s]p the term that is obtained
from t by replacing the subterm at position p by s, i.e.

t [s]ε := s
f (t1, . . . , tn)[s]ip:= f (t1, ..., ti [s]p, . . . , tn)

Functional Programming Languages 14 / 127

Examples

Suppose t = ∨(¬(x42),∧(T, x3))

t in tree notation with position annotations:
Pos(t) = {ε, 1, 12, 2, 21, 22}
|t | = 6 (number of nodes in the tree)
t |2 = ∧(T, x3)

t [¬(F)]|2 = ∨(¬(x42),¬(F))

Functional Programming Languages 15 / 127

An Induction Principle for Terms

Term Induction
To prove that a predicate P holds for all t ∈ T (Σ,X), we have
to show the following properties:

Induction basis
P(x) holds for all x ∈ X and P(f) holds for all f ∈ Σ(0).
Induction step
Suppose n > 0, f ∈ Σ(n), and t1, . . . , tn ∈ T (Σ,X).
Then P(f (t1, . . . , tn)) holds assuming P(t1), . . . ,P(tn).

Note: Term Induction can be seen as an instance of ordinary
induction using the term size as the induction variable.

Functional Programming Languages 16 / 127

Example for Term Induction

Lemma
For all terms t , the set Pos(t) is prefix closed, i.e. if
wv ∈ Pos(t) then w ∈ Pos(t).

Proof. We prove the lemma by term induction.
Basis: If t = x or t = f (where f is a constant), then
Pos(t) = {ε}, which is prefix closed.
Step: see next slide

Functional Programming Languages 17 / 127

Example for Term Induction (cont.)

Step: Suppose t = f (t1, . . . , tn) with f ∈ Σ(n) for n > 0
and Pos(ti) is prefix closed for all i = 1, . . . , n. We have
to show that

Pos(t) := {ε} ∪
n⋃

i=1

{ip|p ∈ Pos(ti)}

is prefix closed as well.
Let w ∈ Pos(t) and suppose that w ′ is a prefix of w , i.e.
w = w ′w ′′. We proceed by case distinction on the form
of w .

Case w = ε: Then w ′ = ε ∈ Pos(t).
Case w = jv : Then v ∈ Pos(ti) for some i ∈ {1, . . . , n}
and v = v ′v ′′ with w ′ = jv ′. By the IH, we get
v ′ ∈ Pos(ti). Hence, jv ′ ∈ Pos(t).

Functional Programming Languages 18 / 127

Substitutions

Definition
Let Σ be a signature.

A T (Σ,X)-substitution is a function σ : X → T (Σ,X)
such that σ(x) 6= x for only finitely many xs.
The domain of σ is Dom(σ) := {x ∈ X | σ(x) 6= x}.
We write {x1 7→ t1, . . . , xn 7→ tn} for a substitution that
maps xi to ti and has domain Dom(σ) = {x1, . . . , xn}.
We write Sub(Σ,X) for the set of T (Σ,X)-substitutions.

Functional Programming Languages 19 / 127

Applying Substitutions to Terms

Definition
The extension of a T (Σ,X)-substitution σ to a mapping
σ̂ : T (Σ,X)→ T (Σ,X) on arbitrary terms is defined as
follows:

σ̂(x) := σ(x)

σ̂(f (t1, . . . , tn)) := f (σ̂(t1), . . . , σ̂(tn))

Note
We usually drop to distinction between σ and σ̂.
Applying the extension of a substitution σ to a term
simultaneously replaces all occurrences of a variable by
their respective σ-image

Functional Programming Languages 20 / 127

Example

A substitution on terms from T (Σpred ,X)

Σ = Σpred

σ = {x 7→ ¬ z, y 7→ x ∨ F}
t = x ∨ y ∧ z

σ(t) = ¬z ∨ (x ∨ F) ∧ z

Functional Programming Languages 21 / 127

Composing Substitutions

Definition
The composition στ of two substitutions σ and τ is defined
as στ(x) := σ(τ(x)).

Lemma
Composition of substitutions is an associative operation
where the identity substitution is the unit.

Lemma
The extension of a composition στ is just the composition of
the extensions; i.e. σ̂τ = σ̂τ̂ .

Functional Programming Languages 22 / 127

Towards Reduction

Definition
Let Σ be a signature. A Σ-identity is a pair
(s, t) ∈ T (Σ,X)× T (Σ,X). We write identities as s ≈ t and
call s its left-hand side and t its right-hand side.

Functional Programming Languages 23 / 127

Reduction Relation

Definition
Let E be a set of Σ-identities. Define the reduction relation
−→E ⊆ T (Σ,X)× T (Σ,X) by

s −→E t if and only if
∃(l, r) ∈ E , p ∈ Pos(s), σ ∈ Sub(Σ,X),
s|p = σ(l) and t = s[σ(r)]p.

Call s|p the redex and σ(r) the reductum of the reduction
(step).

Example

G := {f (x , f (y , z)) ≈ f (f (x , y), z), f (e, x) ≈ x , f (i(x), x) ≈ e}

Reduce
f (i(e), f (e, e))

Functional Programming Languages 24 / 127

Leftmost Reduction

Definition
Let E be a set of Σ-identities. Define the leftmost reduction
relation −→l

E ⊆ T (Σ,X)× T (Σ,X) by
s −→l

E t if and only if
s −→E t at position p ∈ Pos(s) and
for all positions q ∈ Pos(s) such that s −→E t ′ it must
be p � q.

Functional Programming Languages 25 / 127

	Terms and All That
	Syntax

