Functional Programming Languages

Prof. Dr. Peter Thiemann and Prof. Dr. Stefan Wehr

Universität Freiburg

November 2022

Functional Programming Languages

- A signature Σ is a set of function symbols, where each f ∈ Σ is associated with a natural number n called the arity of f.
- $\Sigma^{(n)}$ denotes the set of all *n*-ary elements of Σ .
- The elements of $\Sigma^{(0)}$ are also called constant symbols.

Signature Σ_{pred} for predicate logic

$$\begin{split} \boldsymbol{\Sigma}_{\textit{pred}} &= \{ \mathbf{T}^{(0)}, \mathbf{F}^{(0)}, \neg^{(1)}, \wedge^{(2)}, \vee^{(2)} \} \\ \boldsymbol{\Sigma}^{(0)}_{\textit{pred}} &= \{ \mathbf{T}, \mathbf{F} \} \\ \boldsymbol{\Sigma}^{(1)}_{\textit{pred}} &= \{ \neg \} \\ \boldsymbol{\Sigma}^{(2)}_{\textit{pred}} &= \{ \wedge, \vee \} \end{split}$$

Terms

Definition

Let Σ be a signature and X a set of variables such that $\Sigma \cap X = \emptyset$. The set $T(\Sigma, X)$ of all Σ -terms over X is inductively defined as

•
$$X \subseteq T(\Sigma, X)$$
,

• for all $n \in \mathbb{N}$, all $f \in \Sigma^{(n)}$, and all $t_1, \ldots, t_n \in T(\Sigma, X)$, we have $f(t_1, \ldots, t_n) \in T(\Sigma, X)$

Note:

- For a constant symbol $f \in \Sigma^{(0)}$, we often write the term f() as f.
- From now on, we leave to variable set $X = \{x, x_1, x_2, \dots, y, y_1, y_2, \dots, z, z_1, z_2 \dots\}$ implicit

Example

Suppose $\Sigma = \Sigma_{pred}$. Then

$$\vee(\neg(x_{42}), \wedge(\mathbf{T}, x_3)) \in T(\Sigma, X)$$

Example

Suppose $\Sigma = \Sigma_{pred}$. Then

$$\vee(\neg(x_{42}), \wedge(\mathbf{T}, x_3)) \in T(\Sigma, X)$$

Alternative notations

- Polish notation: $\lor \neg x_{42} \land \mathbf{T} x_3$
- Prefix notation as in Scheme: (∨ (¬ x₄₂) (∧ T x₃))
- Infix notation (with implicit operator precedence): ¬x₄₂ ∨ T ∧ x₃
- Tree notation

Unique Decomposition of Terms

Lemma

Let $t, s \in T(\Sigma, X)$ with $t = f(t_1, \ldots, t_n)$ and $s = g(s_1, \ldots, s_m)$. If t = s then f = g, n = m, and $t_i = s_i$ for all $i \in \{1, \ldots, n\}$.

Proof. Clearly, f = g and $t_1 \dots t_n = s_1 \dots s_m$. We prove n = m and $t_i = s_i$ by induction on the length k of $w = t_1 \dots t_n$.

- Induction basis: k = 0, so nothing is to prove.
- Induction step: Suppose k > 0. Then w = aw'.
 - If $a \in X$ then $t_1 = a = s_1$ and $t_2 \dots t_n = s_2 \dots s_m$. The IH yields n = m and $t_i = s_i$ for $2 \le i \le m$.
 - If $a \in \Sigma^{(p)}$ then $t_1 = a(t'_1, \ldots, t'_p)$ and $s_1 = a(s'_1, \ldots, t'_p)$. From the assumption $t_1 \ldots t_n = s_1 \ldots s_m$ we get $t'_1 \ldots t'_p t_2 \ldots t_n = s'_1 \ldots s'_p s_2 \ldots s_m$. The IH now yields n = m and $t_i = s_i$ for $2 \le i \le n$ and $t'_j = s'_j$ for $1 \le j \le p$. Hence, we also have $t_1 = s_1$.

Positions and Size of Terms

Definition

Suppose $t \in T(\Sigma, X)$.

 The set of positions of term t is a set Pos(t) of strings over the alphabet of natural numbers. It is inductively defined as follows:

• If
$$t = x \in X$$
, then $\mathcal{P}os(t) := \{\epsilon\}$

• If
$$t = f(t_1, ..., t_n)$$
, then

$$\mathcal{P}os(t) := \{\epsilon\} \cup \bigcup_{i=1}^{n} \{ip | p \in \mathcal{P}os(t_i)\}$$

- The position ϵ is called the root position of *t*, the function or variable at this position is called the root symbol of t.
- The size |t| of t is the cardinality of $\mathcal{P}os(t)$.

We define an ordering $\leq \mathcal{P}os(t) \times \mathcal{P}os(t)$ inductively by

- $\epsilon \leq p$, for all p;
- $ip \leq jq$, if either i < j or i = j and $p \leq q$.

(lexicographic ordering)

Subterms and Replacing

Definition (Subterm)

For $p \in \mathcal{P}os(t)$, the subterm of *t* at position *p*, denoted by $t|_p$, is defined by induction on the length of *p*:

$$t|_{\epsilon} := t$$

 $f(t_1, \ldots, t_n)|_{ip} := t_i|_p$

 $(ip \in \mathcal{P}os(t) \text{ implies that } t = f(t_1, \ldots, t_n) \text{ with } 0 \le i \le n.)$

Subterms and Replacing

Definition (Subterm)

For $p \in \mathcal{P}os(t)$, the subterm of *t* at position *p*, denoted by $t|_p$, is defined by induction on the length of *p*:

$$t|_{\epsilon} := t$$

 $f(t_1, \ldots, t_n)|_{ip} := t_i|_p$

 $(ip \in \mathcal{P}os(t) \text{ implies that } t = f(t_1, \ldots, t_n) \text{ with } 0 \le i \le n.)$

Definition (Replacing)

For $p \in \mathcal{P}os(t)$, we denote by $t[s]_p$ the term that is obtained from *t* by replacing the subterm at position *p* by *s*, i.e.

$$t[\boldsymbol{s}]_{\epsilon} := \boldsymbol{s}$$

$$f(t_1, \ldots, t_n)[\boldsymbol{s}]_{ip} := f(t_1, \ldots, t_i[\boldsymbol{s}]_p, \ldots, t_n)$$

Suppose $t = \lor (\neg(x_{42}), \land (\mathsf{T}, x_3))$

- *t* in tree notation with position annotations:
- $\mathcal{P}os(t) = \{\epsilon, 1, 12, 2, 21, 22\}$
- |t| = 6 (number of nodes in the tree)

•
$$t|_2 = \wedge (\mathbf{T}, x_3)$$

•
$$t[\neg(\mathsf{F})]|_2 = \lor(\neg(x_{42}), \neg(\mathsf{F}))$$

Term Induction

To prove that a predicate *P* holds for all $t \in T(\Sigma, X)$, we have to show the following properties:

Induction basis

P(x) holds for all $x \in X$ and P(f) holds for all $f \in \Sigma^{(0)}$.

Induction step

Suppose n > 0, $f \in \Sigma^{(n)}$, and $t_1, \ldots, t_n \in T(\Sigma, X)$. Then $P(f(t_1, \ldots, t_n))$ holds assuming $P(t_1), \ldots, P(t_n)$.

Note: Term Induction can be seen as an instance of ordinary induction using the term size as the induction variable.

Lemma

For all terms *t*, the set $\mathcal{P}os(t)$ is prefix closed, i.e. if $wv \in \mathcal{P}os(t)$ then $w \in \mathcal{P}os(t)$.

Proof. We prove the lemma by term induction.

- Basis: If t = x or t = f (where f is a constant), then $\mathcal{P}os(t) = \{\epsilon\}$, which is prefix closed.
- Step: see next slide

Example for Term Induction (cont.)

 Step: Suppose t = f(t₁,..., t_n) with f ∈ Σ⁽ⁿ⁾ for n > 0 and Pos(t_i) is prefix closed for all i = 1,..., n. We have to show that

$$\mathcal{P}os(t) := \{\epsilon\} \cup \bigcup_{i=1}^{n} \{ip | p \in \mathcal{P}os(t_i)\}$$

is prefix closed as well.

Let $w \in \mathcal{P}os(t)$ and suppose that w' is a prefix of w, i.e. w = w'w''. We proceed by case distinction on the form of w.

• Case $w = \epsilon$: Then $w' = \epsilon \in \mathcal{P}os(t)$.

• Case
$$w = jv$$
: Then $v \in \mathcal{P}os(t_i)$ for some $i \in \{1, ..., n\}$
and $v = v'v''$ with $w' = jv'$. By the IH, we get
 $v' \in \mathcal{P}os(t_i)$. Hence, $jv' \in \mathcal{P}os(t)$.

Let Σ be a signature.

- A T(Σ, X)-substitution is a function σ : X → T(Σ, X) such that σ(x) ≠ x for only finitely many xs.
- The domain of σ is $\mathcal{D}om(\sigma) := \{x \in X \mid \sigma(x) \neq x\}.$
- We write $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ for a substitution that maps x_i to t_i and has domain $\mathcal{D}om(\sigma) = \{x_1, \ldots, x_n\}$.
- We write $Sub(\Sigma, X)$ for the set of $T(\Sigma, X)$ -substitutions.

Applying Substitutions to Terms

Definition

The extension of a $T(\Sigma, X)$ -substitution σ to a mapping $\hat{\sigma} : T(\Sigma, X) \to T(\Sigma, X)$ on arbitrary terms is defined as follows:

•
$$\hat{\sigma}(\mathbf{x}) := \sigma(\mathbf{x})$$

•
$$\hat{\sigma}(f(t_1,\ldots,t_n)) := f(\hat{\sigma}(t_1),\ldots,\hat{\sigma}(t_n))$$

Note

- We usually drop to distinction between σ and $\hat{\sigma}$.
- Applying the extension of a substitution *σ* to a term simultaneously replaces all occurrences of a variable by their respective *σ*-image

A substitution on terms from $T(\Sigma_{pred}, X)$

$$\Sigma = \Sigma_{pred}$$

$$\sigma = \{ x \mapsto \neg z, y \mapsto x \lor \mathbf{F} \}$$

$$t = x \lor y \land z$$

$$\sigma(t) = \neg z \lor (x \lor \mathbf{F}) \land z$$

The composition $\sigma\tau$ of two substitutions σ and τ is defined as $\sigma\tau(x) := \sigma(\tau(x))$.

Lemma

Composition of substitutions is an associative operation where the identity substitution is the unit.

Lemma

The extension of a composition $\sigma\tau$ is just the composition of the extensions; i.e. $\hat{\sigma\tau} = \hat{\sigma}\hat{\tau}$.

Let Σ be a signature. A Σ -identity is a pair $(s, t) \in T(\Sigma, X) \times T(\Sigma, X)$. We write identities as $s \approx t$ and call *s* its left-hand side and *t* its right-hand side.

Reduction Relation

Definition

Let *E* be a set of Σ -identities. Define the reduction relation $\longrightarrow_E \subseteq T(\Sigma, X) \times T(\Sigma, X)$ by $s \longrightarrow_E t$ if and only if $\exists (I, r) \in E, p \in \mathcal{P}os(s), \sigma \in \mathcal{S}ub(\Sigma, X),$ $s|_p = \sigma(I)$ and $t = s[\sigma(r)]_p$. Call $s|_p$ the redex and $\sigma(r)$ the reductum of the reduction (step).

Example

$$G := \{f(x, f(y, z)) \approx f(f(x, y), z), f(e, x) \approx x, f(i(x), x) \approx e\}$$

Reduce

f(i(e), f(e, e))

Functional Programming Languages

Let *E* be a set of Σ -identities. Define the leftmost reduction relation $\longrightarrow_{E}^{I} \subseteq T(\Sigma, X) \times T(\Sigma, X)$ by

- $s \longrightarrow_{E}^{l} t$ if and only if
 - $s \longrightarrow_E t$ at position $p \in \mathcal{P}os(s)$ and
 - for all positions q ∈ Pos(s) such that s →_E t' it must be p ≤ q.