Functional Programming Languages

Prof. Dr. Peter Thiemann and Prof. Dr. Stefan Wehr

Universitat Freiburg

November 2022

Functional Programming Languages 1/127

Signatures

Definition
@ A signature ¥ is a set of function symbols, where each

f € X is associated with a natural number n called the
arity of f.

@ Y(" denotes the set of all n-ary elements of ¥.
@ The elements of (9 are also called constant symbols.)

Functional Programming Languages 71127

Example

Signature ¥ ;o4 for predicate logic

Zpred — {T(O), F(O)7 _|(1), /\(2)’ \/(2)}
0
Z;(Jn?:-d = {Ta F}
1
Z,SJrZ:'d = {_'}
Z,szrgd = {/\’ \/})

Functional Programming Languages 8/127

Terms

Definition
Let > be a signature and X a set of variables such that
Y N X =0. The set T(X, X) of all -terms over X is
inductively defined as
e XC T(%,X),
o foralneN,allfe ¥ andallt,...,t, € T(X,X), we
have f(t,...,t,) € T(X, X)

V.

Note:
@ For a constant symbol f € ¥(©), we often write the term
f() as f.
@ From now on, we leave to variable set
X={x,x1,X,....¥, Y1, Y-, 2,21, 2. ..} implicit

Functional Programming Languages 9/127

Suppose > = X peq. Then

\/(_|(X42), /\(T, X3)) S T(Z, X)

Functional Programming Languages 10/127

Example

Suppose > = X peq. Then

\/(_|(X42), /\(T, X3)) S T(Z, X)

Alternative notations
@ Polish notation: Vx4 A T X3

@ Prefix notation as in Scheme: (V (= x2) (AT x3))

@ Infix notation (with implicit operator precedence):
—Xg0 V TA X3

@ Tree notation

.

Functional Programming Languages 10/127

Unique Decomposition of Terms

Lett,s e T(X,X)witht=f(t,...,t,) and s = g(s1,...,Sm).
Ift=sthenf=g,n=m,and t,=s;forallie {1,..., n}.

Proof. Clearly, f=gand t;...t,=8;...S,. We prove
n = mand f; = s; by induction on the length k of w = t; .. . t,.

@ Induction basis: kK = 0, so nothing is to prove.
@ Induction step: Suppose k > 0. Then w = aw'.

o lfaec Xthenti=a=syandb...t),=5>...5y. The |H
yieldsn=mand t; =s;for2 <i<m.

o Ifac P thent; =a(t,...,t) and sy = a(s),...,t)).
From the assumption t; ... t, = s1...5m we get
ti...bt...th=5]...8,52...Sm. The IH now yields
n:mandt,-:s,-for2§ignandt;:sj’-foﬂ <j<np.
Hence, we also have t; = s;. O

Functional Programming Languages 11/127

Positions and Size of Terms

Definition
Suppose t € T(X, X).
@ The set of positions of term t is a set Pos(t) of strings

over the alphabet of natural numbers. It is inductively
defined as follows:

o If t =x € X, then Pos(t) := {e}
o Ift=1(t,..., tn), then

Pos(t) :={e} U | J{iolp € Pos(t;)}

i=1

@ The position ¢ is called the root position of £, the function
or variable at this position is called the root symbol of t.

@ The size [t] of t is the cardinality of Pos(t).

V.

Functional Programming Languages

12/127

Ordering Positions

Definition

We define an ordering < C Pos(t) x Pos(t) inductively by
@ ¢ <X p, forall p;
@ ip=jg,ifeitheri<jori=jandp < q.

(lexicographic ordering)

Functional Programming Languages 13/127

Subterms and Replacing

Definition (Subterm)

For p € Pos(t), the subterm of t at position p, denoted by
t|p, is defined by induction on the length of p:

tle:=t
f(t,. .. t)lio:= tilp

(ip € Pos(t) implies that t = f(t;,...,t,) with0 < i < n.)

Functional Programming Languages 14 /127

Subterms and Replacing

Definition (Subterm)

For p € Pos(t), the subterm of t at position p, denoted by
t|p, is defined by induction on the length of p:

tle:=t
f(t,. .. t)lio:= tilp

(ip € Pos(t) implies that t = f(t,...,t,) with 0 < i < n.)

Definition (Replacing)

For p € Pos(t), we denote by {[s], the term that is obtained
from t by replacing the subterm at position p by s, i.e.

t[s]lc :==s
f(t1, saog tn)[S],'pZ: f(t1, acog ti[S]p, saog tn)

Functional Programming Languages 14 /127

Suppose t = V(—(xs2), A(T, X3))
@ tin tree notation with position annotations:
@ Pos(t) ={¢,1,12,2,21,22}
@ |t| = 6 (number of nodes in the tree)
® to = A(T, x3)
o t[=(F)]l2 = V(—(xa2), ~(F))

Functional Programming Languages 15/127

An Induction Principle for Terms

Term Induction
To prove that a predicate P holds for all t € T(X, X), we have
to show the following properties:
@ Induction basis
P(x) holds for all x € X and P(f) holds for all f € ¥(©).
@ Induction step
Suppose n >0, f€ ¥, and t;,...,t, € T(X, X).
Then P(f(t, ..., t;)) holds assuming P(t), ..., P(t,).

Note: Term Induction can be seen as an instance of ordinary
induction using the term size as the induction variable.

Functional Programming Languages 16/127

Example for Term Induction

For all terms ¢, the set Pos(t) is prefix closed, i.e. if
wv € Pos(t) then w € Pos(t).

Proof. We prove the lemma by term induction.

@ Basis: If t = x or t = f (where f is a constant), then
Pos(t) = {e}, which is prefix closed.

@ Step: see next slide

Functional Programming Languages 17/127

Example for Term Induction (cont.)

@ Step: Suppose t = f(t;,...,t,) with f € £(") for n > 0
and Pos(t) is prefix closed for all i = 1,..., n. We have
to show that

Pos(t) :={e} U J{iplp € Pos(t;)}

i=1

is prefix closed as well.
Let w € Pos(t) and suppose that w’ is a prefix of w, i.e.
w = w'w”. We proceed by case distinction on the form

of w.
e Case w =¢: Then w = ¢ € Pos(t).
e Case w = jv: Then v € Pos(t;) forsomeic {1,...,n}

and v = v'v" with w = jv'. By the IH, we get
v/ € Pos(t;). Hence, jv' € Pos(t).

Functional Programming Languages 18/127

Substitutions

Let X be a signature.

@ A T(X, X)-substitution is a function o : X — T(X, X)
such that o(x) # x for only finitely many xs.

@ The domain of o is Dom(c) := {x € X | o(x) # x}.

@ We write {x; — t,..., X, — t,} for a substitution that
maps x; to t; and has domain Dom(c) = {x1,..., X,}.

@ We write Sub(¥, X) for the set of T(X, X)-substitutions. |

Functional Programming Languages 19/127

Applying Substitutions to Terms

Definition
The extension of a T(X, X)-substitution o to a mapping
g T(X,X) — T(X, X) on arbitrary terms is defined as
follows:

@ 5(x) :=0o(x)

o 6(f(ty,....t)) :=f(6(th),...,6(t))

.

@ We usually drop to distinction between ¢ and 6.

@ Applying the extension of a substitution ¢ to a term
simultaneously replaces all occurrences of a variable by
their respective o-image

.

Functional Programming Languages 20/127

Example

A substitution on terms from T (X preq, X)

Z:Zpreof

o={x—-z,y— xVF}

t=xVyAz
o(t)y=-zV(xVF)Az

Functional Programming Languages

21/127

Composing Substitutions

Definition
The composition o7 of two substitutions ¢ and 7 is defined
as o7(x) := o(7(x)).

\.

Lemma
Composition of substitutions is an associative operation
where the identity substitution is the unit.

The extension of a composition o7 is just the composition of
the extensions; i.e. o7 = 67.

Functional Programming Languages 22/127

Towards Reduction

Definition

Let > be a signature. A > -identity is a pair
(s,t) € T(X, X) x T(X, X). We write identities as s ~ t and
call s its left-hand side and t its right-hand side.

Functional Programming Languages 23/127

Reduction Relation

Definition
Let E be a set of Z-identities. Define the reduction relation
—e CT(X,X) x T(X, X) by
s — tif and only if

3(l,r) € E,p € Pos(s),o € Sub(x, X),

slp = o(l) and t = s[o(r)],.
Call s|, the redex and o(r) the reductum of the reduction
(step).

.

G = {f(x,f(y,2)) = f(f(x,y), 2), f(e, x) = x, f(i(x), x) = e}

Reduce

f(i(e), f(e, e))

Functional Programming Languages 24 /127

Leftmost Reduction

Definition
Let E be a set of Z-identities. Define the leftmost reduction
relation —£ C T(X, X) x T(Z, X) by
s —L tif and only if
@ s —¢ t at position p € Pos(s) and
o for all positions g € Pos(s) such that s — ¢ t' it must
be p = gq.

Functional Programming Languages 25/127

	Terms and All That
	Syntax

