
Testing Python

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann

14 Oct 2019

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 2 / 67

What is Testing?

NO:

Run a program on some nice examples.

YES:

Run a program with the intent of finding an error.

identify corner cases

devise tricky examples

exercise the program logic

Caveat (Edsger W. Dijkstra, 1970, EWD249)

Program testing can be used to show the presence of bugs, but never to show their
absence!

Thiemann Testing Python 14 Oct 2019 3 / 67

What is Testing?

NO:

Run a program on some nice examples.

YES:

Run a program with the intent of finding an error.

identify corner cases

devise tricky examples

exercise the program logic

Caveat (Edsger W. Dijkstra, 1970, EWD249)

Program testing can be used to show the presence of bugs, but never to show their
absence!

Thiemann Testing Python 14 Oct 2019 3 / 67

What is Testing?

NO:

Run a program on some nice examples.

YES:

Run a program with the intent of finding an error.

identify corner cases

devise tricky examples

exercise the program logic

Caveat (Edsger W. Dijkstra, 1970, EWD249)

Program testing can be used to show the presence of bugs, but never to show their
absence!

Thiemann Testing Python 14 Oct 2019 3 / 67

Why Test?

Increase Confidence

Early and quick feedback on changes
Up to 20% of bugfixes introduce new bugs. Beware!

Debugging aid

TDD (test driven design)
Specification by way of test cases
Implementation proceeds along the test cases

Thiemann Testing Python 14 Oct 2019 4 / 67

The Downside

Tests are also code and can be buggy

Tests take time and effort to write and maintain

Tests can be brittle can give different results on different runs

Tests can give a false sense of security (remember Dijkstra!)

Thiemann Testing Python 14 Oct 2019 5 / 67

Different Kinds of Tests
Select examples

Unit Test

Tests a unit of code in isolation.

A unit can be a single function or method, an entire class, or an entire module.

Lightweight and fast.

Integration Test

Tests the interplay of several units.

Stress on checking compatibility of interfaces.

System Test

Test of applications on the system level.

Heavyweight.

Thiemann Testing Python 14 Oct 2019 6 / 67

Different Kinds of Tests
Select examples

Unit Test

Tests a unit of code in isolation.

A unit can be a single function or method, an entire class, or an entire module.

Lightweight and fast.

Integration Test

Tests the interplay of several units.

Stress on checking compatibility of interfaces.

System Test

Test of applications on the system level.

Heavyweight.

Thiemann Testing Python 14 Oct 2019 6 / 67

Different Kinds of Tests
Select examples

Unit Test

Tests a unit of code in isolation.

A unit can be a single function or method, an entire class, or an entire module.

Lightweight and fast.

Integration Test

Tests the interplay of several units.

Stress on checking compatibility of interfaces.

System Test

Test of applications on the system level.

Heavyweight.

Thiemann Testing Python 14 Oct 2019 6 / 67

Automatic Tests

Why automatize?

Tests are code

Tests can be parameterized and run with several instances

Tests can run in the background (in the cloud, over night, . . .)

Regression tests:

Run tests after each change
Newly introduced bugs can be caught early

Thiemann Testing Python 14 Oct 2019 7 / 67

Unit Testing

Well-understood methodology

Supports TDD

Tool support

Easily automatized

Thiemann Testing Python 14 Oct 2019 8 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 9 / 67

Let’s Test

Task

1 The function list_filter has two parameters, an integer x and a list of
integers xs, and returns the list of all elements of xs which are less than or
equal to x.

2 Write meaningful tests for this function.

How to Approach Testing

def list_filter (x, xs):
######

Suppose your worst enemy implemented this function.

How would you test it?

Thiemann Testing Python 14 Oct 2019 10 / 67

Let’s Test

Task

1 The function list_filter has two parameters, an integer x and a list of
integers xs, and returns the list of all elements of xs which are less than or
equal to x.

2 Write meaningful tests for this function.

How to Approach Testing

def list_filter (x, xs):
######

Suppose your worst enemy implemented this function.

How would you test it?

Thiemann Testing Python 14 Oct 2019 10 / 67

Meaningful Tests

The function list_filter has two parameters, an integer x and a list of integers
xs, and returns the list of all elements of xs which are less than or equal to x.

1 empty list (boundary case):
list_filter (4, []) == []

2 sharpness of the test (mixup of the relation):
list_filter (4, [4]) == [4]
list_filter (4, [3]) == [3]
list_filter (4, [5]) == []

3 uniformity (problem with the iteration):
list_filter (4, [1,3,5]) == [1,3]
list_filter (4, [1,5,4]) == [1,4]

Thiemann Testing Python 14 Oct 2019 11 / 67

Meaningful Tests

The function list_filter has two parameters, an integer x and a list of integers
xs, and returns the list of all elements of xs which are less than or equal to x.

1 empty list (boundary case):
list_filter (4, []) == []

2 sharpness of the test (mixup of the relation):
list_filter (4, [4]) == [4]
list_filter (4, [3]) == [3]
list_filter (4, [5]) == []

3 uniformity (problem with the iteration):
list_filter (4, [1,3,5]) == [1,3]
list_filter (4, [1,5,4]) == [1,4]

Thiemann Testing Python 14 Oct 2019 11 / 67

Meaningful Tests

The function list_filter has two parameters, an integer x and a list of integers
xs, and returns the list of all elements of xs which are less than or equal to x.

1 empty list (boundary case):
list_filter (4, []) == []

2 sharpness of the test (mixup of the relation):
list_filter (4, [4]) == [4]
list_filter (4, [3]) == [3]
list_filter (4, [5]) == []

3 uniformity (problem with the iteration):
list_filter (4, [1,3,5]) == [1,3]
list_filter (4, [1,5,4]) == [1,4]

Thiemann Testing Python 14 Oct 2019 11 / 67

Meaningful Tests

The function list_filter has two parameters, an integer x and a list of integers
xs, and returns the list of all elements of xs which are less than or equal to x.

1 empty list (boundary case):
list_filter (4, []) == []

2 sharpness of the test (mixup of the relation):
list_filter (4, [4]) == [4]
list_filter (4, [3]) == [3]
list_filter (4, [5]) == []

3 uniformity (problem with the iteration):
list_filter (4, [1,3,5]) == [1,3]
list_filter (4, [1,5,4]) == [1,4]

Thiemann Testing Python 14 Oct 2019 11 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 12 / 67

Writing Tests with pytest

pytest
(http://pytest.org/en/latest/) is a
Python tool for testing

We start with the simplest way of
using it.

Thiemann Testing Python 14 Oct 2019 13 / 67

http://pytest.org/en/latest/

Writing Tests with pytest

A pytest Test

Each function whose name starts with test_ is a test function.

Each test function should contain an assert statement that corresponds to a
valid property of the subject.

Test functions can be included at the end of the source file.

Running the source file with pytest executes all test functions.

Thiemann Testing Python 14 Oct 2019 14 / 67

Example Tests

def test_empty():
assert list_filter (4, []) == []

def test_sharp1():
assert list_filter (4, [4]) == [4]

def test_sharp2():
assert list_filter (4, [3]) == [3]

def test_sharp3():
assert list_filter (4, [5]) == []

def test_uniform1():
assert list_filter (4, [1,3,5]) == [1,3]

def test_uniform2():
assert list_filter (4, [1,5,4]) == [1,4]

Thiemann Testing Python 14 Oct 2019 15 / 67

Running the Tests

On a buggy implementation in file list_filter.py:

def list_filter (x, xs):
return [y for y in xs if y < x]

To run the tests:

src$ pytest list_filter.py

Thiemann Testing Python 14 Oct 2019 16 / 67

Output of pytest list filter.py

============================= test session starts ==============================
platform darwin -- Python 3.7.3, pytest-4.0.1, py-1.7.0, pluggy-0.8.0
rootdir: /Users/thiemann/svn/proglang-talks/20191014-python-testing-for-physics/src/list_filter, inifile:
collected 6 items

list_filter.py .F...F [100%]

=================================== FAILURES ===================================
_________________________________ test_sharp1 __________________________________

def test_sharp1():
> assert list_filter (4, [4]) == [4]
E assert [] == [4]
E Right contains more items, first extra item: 4
E Use -v to get the full diff

list_filter.py:12: AssertionError
________________________________ test_uniform2 _________________________________

def test_uniform2():
> assert list_filter (4, [1,5,4]) == [1,4]
E assert [1] == [1, 4]
E Right contains more items, first extra item: 4
E Use -v to get the full diff

list_filter.py:24: AssertionError
====================== 2 failed, 4 passed in 0.08 seconds ======================

Thiemann Testing Python 14 Oct 2019 17 / 67

More Verbose Output of pytest -v list filter.py
============================= test session starts ==============================
platform darwin -- Python 3.7.3, pytest-4.0.1, py-1.7.0, pluggy-0.8.0 -- /usr/local/opt/python/bin/python3.7
cachedir: .pytest_cache
rootdir: /Users/thiemann/svn/proglang-talks/20191014-python-testing-for-physics/src/list_filter, inifile:
collecting ... collected 6 items

list_filter.py::test_empty PASSED [16%]
list_filter.py::test_sharp1 FAILED [33%]
list_filter.py::test_sharp2 PASSED [50%]
list_filter.py::test_sharp3 PASSED [66%]
list_filter.py::test_uniform1 PASSED [83%]
list_filter.py::test_uniform2 FAILED [100%]

=================================== FAILURES ===================================
_________________________________ test_sharp1 __________________________________

def test_sharp1():
> assert list_filter (4, [4]) == [4]
E assert [] == [4]
E Right contains more items, first extra item: 4
E Full diff:
E - []
E + [4]
E ? +

list_filter.py:12: AssertionError
________________________________ test_uniform2 _________________________________

def test_uniform2():
> assert list_filter (4, [1,5,4]) == [1,4]
E assert [1] == [1, 4]
E Right contains more items, first extra item: 4
E Full diff:
E - [1]
E + [1, 4]

list_filter.py:24: AssertionError
====================== 2 failed, 4 passed in 0.05 seconds ======================

Thiemann Testing Python 14 Oct 2019 18 / 67

Usability

Advice

Each test function should contain one assert to test one property!

⇒ Testing stops at the first failing assert in a function, the remaining asserts are
ignored!

Thiemann Testing Python 14 Oct 2019 19 / 67

Which Errors are Detected?

def list_filter (x, xs):
return [y for y in xs if y < x]

def list_filter (x, xs):
return [x for y in xs if y <= x]

def list_filter (x, xs):
r = []
for y in xs:

if y <= x: r = [y] + r
return r

def list_filter (x, xs):
r = []
for i in range(1, len(xs)):

if xs[i] <= x: r = r + [xs[i]]
return r

Thiemann Testing Python 14 Oct 2019 20 / 67

Aside on the Specification

The function list_filter has two parameters, an integer x and a list of integers
xs, and returns the list of all elements of xs which are less than or equal to x.

What does it actually fix?

Thiemann Testing Python 14 Oct 2019 21 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 22 / 67

Testing with Numbers

Task

1 The function vector_rotate has two parameters, a 2D point p and an angle
a in degrees, and returns a 2D point rotated by a degrees around the origin.

2 We represent a 2D point by a tuple.

3 Write meaningful tests for this function.

Thiemann Testing Python 14 Oct 2019 23 / 67

Testing Rotation

The function vector_rotate has two parameters, a 2D point p and an angle a in
degrees, and returns a 2D point rotated by a degrees around the origin.

1 rotating the origin by any angle should not matter:
vector_rotate ((0,0), 42) == (0, 0)

2 rotating any vector by 0 degrees should leave the vector unchanged:
vector_rotate ((10,10), 0) == (10,10)

3 rotating the unit vector (1,0) by 90 (180, 270) degrees should yield the unit
vector (0,1) (resp (-1,0), (0,-1)):
assert vector_rotate ((1,0), 90) == (0,1)

4 rotating any vector by any angle should leave the length of the vector unchanged

5 if vector_rotate (v, a) == w, then
cos (a) == (v * w) / (v * v) where * stands for the dot product

Thiemann Testing Python 14 Oct 2019 24 / 67

Testing Rotation

The function vector_rotate has two parameters, a 2D point p and an angle a in
degrees, and returns a 2D point rotated by a degrees around the origin.

1 rotating the origin by any angle should not matter:
vector_rotate ((0,0), 42) == (0, 0)

2 rotating any vector by 0 degrees should leave the vector unchanged:
vector_rotate ((10,10), 0) == (10,10)

3 rotating the unit vector (1,0) by 90 (180, 270) degrees should yield the unit
vector (0,1) (resp (-1,0), (0,-1)):
assert vector_rotate ((1,0), 90) == (0,1)

4 rotating any vector by any angle should leave the length of the vector unchanged

5 if vector_rotate (v, a) == w, then
cos (a) == (v * w) / (v * v) where * stands for the dot product

Thiemann Testing Python 14 Oct 2019 24 / 67

Testing Rotation

The function vector_rotate has two parameters, a 2D point p and an angle a in
degrees, and returns a 2D point rotated by a degrees around the origin.

1 rotating the origin by any angle should not matter:
vector_rotate ((0,0), 42) == (0, 0)

2 rotating any vector by 0 degrees should leave the vector unchanged:
vector_rotate ((10,10), 0) == (10,10)

3 rotating the unit vector (1,0) by 90 (180, 270) degrees should yield the unit
vector (0,1) (resp (-1,0), (0,-1)):
assert vector_rotate ((1,0), 90) == (0,1)

4 rotating any vector by any angle should leave the length of the vector unchanged

5 if vector_rotate (v, a) == w, then
cos (a) == (v * w) / (v * v) where * stands for the dot product

Thiemann Testing Python 14 Oct 2019 24 / 67

Testing Rotation

The function vector_rotate has two parameters, a 2D point p and an angle a in
degrees, and returns a 2D point rotated by a degrees around the origin.

1 rotating the origin by any angle should not matter:
vector_rotate ((0,0), 42) == (0, 0)

2 rotating any vector by 0 degrees should leave the vector unchanged:
vector_rotate ((10,10), 0) == (10,10)

3 rotating the unit vector (1,0) by 90 (180, 270) degrees should yield the unit
vector (0,1) (resp (-1,0), (0,-1)):
assert vector_rotate ((1,0), 90) == (0,1)

4 rotating any vector by any angle should leave the length of the vector unchanged

5 if vector_rotate (v, a) == w, then
cos (a) == (v * w) / (v * v) where * stands for the dot product

Thiemann Testing Python 14 Oct 2019 24 / 67

Testing Rotation

The function vector_rotate has two parameters, a 2D point p and an angle a in
degrees, and returns a 2D point rotated by a degrees around the origin.

1 rotating the origin by any angle should not matter:
vector_rotate ((0,0), 42) == (0, 0)

2 rotating any vector by 0 degrees should leave the vector unchanged:
vector_rotate ((10,10), 0) == (10,10)

3 rotating the unit vector (1,0) by 90 (180, 270) degrees should yield the unit
vector (0,1) (resp (-1,0), (0,-1)):
assert vector_rotate ((1,0), 90) == (0,1)

4 rotating any vector by any angle should leave the length of the vector unchanged

5 if vector_rotate (v, a) == w, then
cos (a) == (v * w) / (v * v) where * stands for the dot product

Thiemann Testing Python 14 Oct 2019 24 / 67

Testing Rotation

The function vector_rotate has two parameters, a 2D point p and an angle a in
degrees, and returns a 2D point rotated by a degrees around the origin.

1 rotating the origin by any angle should not matter:
vector_rotate ((0,0), 42) == (0, 0)

2 rotating any vector by 0 degrees should leave the vector unchanged:
vector_rotate ((10,10), 0) == (10,10)

3 rotating the unit vector (1,0) by 90 (180, 270) degrees should yield the unit
vector (0,1) (resp (-1,0), (0,-1)):
assert vector_rotate ((1,0), 90) == (0,1)

4 rotating any vector by any angle should leave the length of the vector unchanged

5 if vector_rotate (v, a) == w, then
cos (a) == (v * w) / (v * v) where * stands for the dot product

Thiemann Testing Python 14 Oct 2019 24 / 67

Applying the Tests to a Correct Implementation . . .

============================= test session starts ==============================
platform darwin -- Python 3.7.3, pytest-4.0.1, py-1.7.0, pluggy-0.8.0 -- /usr/local/opt/python/bin/python3.7
cachedir: .pytest_cache
rootdir: /Users/thiemann/svn/proglang-talks/20191014-python-testing-for-physics/src/tuple_rotate, inifile:
collecting ... collected 5 items

tuple_rotate.py::test_rot_origin PASSED [20%]
tuple_rotate.py::test_rot0 PASSED [40%]
tuple_rotate.py::test_rot90 FAILED [60%]
tuple_rotate.py::test_length PASSED [80%]
tuple_rotate.py::test_angle PASSED [100%]

=================================== FAILURES ===================================
__________________________________ test_rot90 __________________________________

def test_rot90():
> assert vector_rotate ((1,0), 90) == (0,1)
E assert (6.123233995736766e-17, 1.0) == (0, 1)
E At index 0 diff: 6.123233995736766e-17 != 0
E Full diff:
E - (6.123233995736766e-17, 1.0)
E + (0, 1)

tuple_rotate.py:26: AssertionError
====================== 1 failed, 4 passed in 0.07 seconds ======================

Thiemann Testing Python 14 Oct 2019 25 / 67

Floating Point Strikes again

Golden Rule

Never, never, never compare floating point numbers for equality!

See https://docs.python.org/3/tutorial/floatingpoint.html for the reason

Comparing Floating Point in pytest

Use pytest.approx

This function applies to numbers, sequences, dictionaries, numpy, etc

It modifies the comparision to make it approximate

Thiemann Testing Python 14 Oct 2019 26 / 67

https://docs.python.org/3/tutorial/floatingpoint.html

From the pytest documentation
http://pytest.org/en/latest/reference.html#pytest-approx

Thiemann Testing Python 14 Oct 2019 27 / 67

http://pytest.org/en/latest/reference.html#pytest-approx

Solution

. . .

rotating the unit vector (1,0) by 90 (180, 270) degrees should yield the unit
vector (0,1) (resp (-1,0), (0,-1)):
assert vector_rotate ((1,0), 90) == approx((0,1))

[actually, this modification should be applied to all tests for this function]

Thiemann Testing Python 14 Oct 2019 28 / 67

Remark

Most of the useful tests for vector_rotate are property tests

Their formulation includes wording like ”any vector” or ”any angle” or ”for all
positive numbers”.

They are most effective if tested for many inputs rather than just one.

Thiemann Testing Python 14 Oct 2019 29 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 30 / 67

Exercise

Task

Write meaningful tests for the following functions:

1 The function leap_year has one parameter, an integer y representing a year
in the Gregorian calendar, and returns whether y is a leap year or not.
The Gregorian calendar is defined for years y greater than 1582 and considers y
a leap year iff

y is divisible by 4; and
if y is divisible by 100, then y must be divisible by 400.

2 The function intersect has four 2D-points as parameters, representing two
lines in two-point-form, and returns the intersection point of those lines, if it
exists uniquely, and None otherwise.

Thiemann Testing Python 14 Oct 2019 31 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 32 / 67

The first subsection is based on the book
Python Continuous Integration and Delivery: A Concise Guide with Examples. Moritz
Lenz. Apress 2019.

Thiemann Testing Python 14 Oct 2019 33 / 67

Continuous Testing

Testing works best if it is automated

Good practice: run tests locally before checking in

But testing a system

can be influenced by the local configuration
can be time consuming (size, different versions)
can be influenced by other developers’ changes

⇒ Continuous Testing

Part of the Continuous Integration / Continuous Delivery (CI/CD) tale

⇒ Tests run regularly and/or at each commit to the source repository

. . . in a controlled environment, on a dedicated machine

Thiemann Testing Python 14 Oct 2019 34 / 67

The Dedicated Test Machine

On-Premise

Roll your own CI-server on a machine controlled by your institution

Preferred for closed source projects

Software as a Service (SaaS)

CI-server maintained by the vendor

In both cases. . .

need to run potentially faulty software in a controlled way

several simultaneous runs must be supported

⇒ some isolation mechanism should be used

industry standard: container-based approach (e.g., docker)

Thiemann Testing Python 14 Oct 2019 35 / 67

The Dedicated Test Machine

On-Premise

Roll your own CI-server on a machine controlled by your institution

Preferred for closed source projects

Software as a Service (SaaS)

CI-server maintained by the vendor

In both cases. . .

need to run potentially faulty software in a controlled way

several simultaneous runs must be supported

⇒ some isolation mechanism should be used

industry standard: container-based approach (e.g., docker)

Thiemann Testing Python 14 Oct 2019 35 / 67

The Dedicated Test Machine

On-Premise

Roll your own CI-server on a machine controlled by your institution

Preferred for closed source projects

Software as a Service (SaaS)

CI-server maintained by the vendor

In both cases. . .

need to run potentially faulty software in a controlled way

several simultaneous runs must be supported

⇒ some isolation mechanism should be used

industry standard: container-based approach (e.g., docker)

Thiemann Testing Python 14 Oct 2019 35 / 67

Intermezzo: What is Docker?

Docker is a container technology

A container provides virtualization at the operating system level

Virtualization means that multiple applications can run in isolation on the same
machine

A containerized application is provided as an image that contains everything it
needs to run starting from the operating system and all customizations

Containers can

share resources with the host and with one another
network among themselves and with the outside world

(Docker is supported by a company called Docker Inc, but there is an
open-source version of the software)

Thiemann Testing Python 14 Oct 2019 36 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 37 / 67

Setting up an On-Premise CI-Server

Jenkins (https://jenkins.io/) is a popular open-source CI-Server

Jenkins is a Java application, which can be difficult to install

But there is a prebuilt docker image for Jenkins that we can customize for our
needs of testing Python programs

This image is available from a central registry, the docker cloud, and can be
summoned by its name jenkins/jenkins:lts

Hence, our strategy

Customize the jenkins/jenkins:lts image
Run Jenkins in a docker container on a server of our choice

To build a new docker image, we need to write a recipe, the Dockerfile

It should be created in an otherwise empty directory

Thiemann Testing Python 14 Oct 2019 38 / 67

https://jenkins.io/

The Dockerfile

1 FROM jenkins/jenkins:lts
2 USER root
3 RUN apt-get update \
4 && apt-get install -y python3-pip python3 \
5 && rm -rf /var/lib/apt/lists/* \
6 && pip3 install -U pytest tox
7 USER jenkins

1 Specify the base image (which itself builds on a debian image)

2 Switch user to enable installing software

3 Update the package repository

4 Install Python3

5 Cleanup

6 Install pytest and tox (which can run tests in different configurations)

7 Switch back to non-privileged user

Thiemann Testing Python 14 Oct 2019 39 / 67

Building the Image

In the directory with the Dockerfile run

jenkins-image$ docker build -t jenkins-python .

It can take a while to construct this image; instead we will use a prebuilt image
pthie/testing:jenk1

Thiemann Testing Python 14 Oct 2019 40 / 67

Starting the CI-Server

$ docker run --rm -p 8080:8080 -p 50000:50000 \
-v jenkins_home:/var/jenkins_home pthie/testing:jenk1

Obtains the requested image and starts it

--rm remove the container on termination

-p 8080:8080 Jenkins is configured to listen on port 8080 in the container;
this connects the container port to the same port on the host machine

-p 50000:50000 (for attaching slave servers)

-v jenkins home:/var/jenkins home attaches a volume (host
directory) to the container for persistent state

pthie/testing:jenk1 name of the image to run

Thiemann Testing Python 14 Oct 2019 41 / 67

Configuring the CI-Server

Running the container yields a lot of output

The important part is this:

Jenkins initial setup is required. An admin user has been created and a password generated.
Please use the following password to proceed to installation:

66e82ef484a04725bd0eea067e75e778

Point your browser to http://127.0.0.1:8080/ to access the Jenkins
configuration (you will be asked to the above password)

(Standard packages are more than sufficient)

Create a user and login

Thiemann Testing Python 14 Oct 2019 42 / 67

Getting Jenkins in English

Jenkins UI uses the browser’s default language

To change that to English

”Manage Jenkins” → ”Manage Plugins” → [’Available’ tab]
Check ”Locale Plugin” checkbox and ”Install without restart” button.
”Manage Jenkins” → ”Configure System” → ”Locale”.
Enter LOCALE code for English: en US
Check ”Ignore browser preference and force this language to all users”.

Source: https://superuser.com/questions/879392/how-force-jenkins-to-show-ui-always-in-english/882823

Thiemann Testing Python 14 Oct 2019 43 / 67

https://superuser.com/questions/879392/how-force-jenkins-to-show-ui-always-in-english/882823

Creating a Test Project

Starting page → ”New Item”

Give it some name, e.g. python-webcount

Select ”Free Style Software Project” → ”OK”

”Source code management” → Git → repository URL
for example: https://github.com/python-ci-cd/python-webcount
but it’s better to clone the repository and work on your own copy

”Build Trigger” → ”Poll SCM”

Enter H/5 * * * * as schedule (check every five minutes)

”Build” → select ”Execute Shell” and enter

cd $WORKSPACE
TOXENV=py35 python3 -c ’import tox; tox.cmdline()’

Save the page: everything is up an running!

Thiemann Testing Python 14 Oct 2019 44 / 67

https://github.com/python-ci-cd/python-webcount

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 45 / 67

Setting up Testing via Circle-CI

Circle-CI provides CI infrastructure which can be linked to (e.g.) GitHub

Using it with Python is straightforward:

Register with Circle-CI (easiest with your GitHub account)
Select a repository to add from the menu
Follow the instructions: in the repository add a .circleci Directory with a file
config.yml
This file is essentially the ”official” Python CircleCI project template
Up to a single modification to install pytest (next slide)

Thiemann Testing Python 14 Oct 2019 46 / 67

Config.yml: install dependencies

The last line needs to be added to the ”install dependencies” step

- run:
name: install dependencies
command: |

python3 -m venv venv
. venv/bin/activate
pip install -r requirements.txt
pip install -U pytest

Full file may be found in https://github.com/peterthiemann/python-webcount

Thiemann Testing Python 14 Oct 2019 47 / 67

https://github.com/peterthiemann/python-webcount

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 48 / 67

Pytest Features

Testing the bad case: exceptions

Depending on external libraries, databases, or the internet

More on structuring test suites

Thiemann Testing Python 14 Oct 2019 49 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 50 / 67

Testing the Bad Case: Binary Search

def search(item, seq):
"""binary search"""
left = 0
right = len(seq)
while left < right:

middle = (left + right) // 2
middle_element = seq[middle]
if middle_element == item:

return middle
elif middle_element < item:

left = middle + 1
else:

right = middle
raise ValueError("Value not in sequence")

It’s common in Python to raise an exception to indicate a failure

Thiemann Testing Python 14 Oct 2019 51 / 67

pytest.raises: Check that the exception is raised

def test_empty ():
r = search (42, [])
assert r == 0

Running this test raises an exception, which is reported as a test failure!
To amend this problem, pytest provides a context manager
pytest.raises, which catches the expected exception ValueError:

def test_empty ():
import pytest
with pytest.raises (ValueError):

r = search (42, [])
with pytest.raises (ValueError):

r = search (0, [1,3,5])
with pytest.raises (ValueError):

r = search (4, [1,3,5])
with pytest.raises (ValueError):

r = search (60, [1,3,5])

Thiemann Testing Python 14 Oct 2019 52 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 53 / 67

Depending on the Internet
Design for Testability

The Credo of Unit Testing

Unit tests should be efficient, predictable, and reproducible.

Design for Testability: Isolation

Tests should be isolated from external resources (internet, databases, etc) because
their use may

cause unpredictable outputs;

have unwanted side effects (on the resource);

degrade performance;

require credentials, which are tricky to manage.

Thiemann Testing Python 14 Oct 2019 54 / 67

Depending on the Internet
Design for Testability

The Credo of Unit Testing

Unit tests should be efficient, predictable, and reproducible.

Design for Testability: Isolation

Tests should be isolated from external resources (internet, databases, etc) because
their use may

cause unpredictable outputs;

have unwanted side effects (on the resource);

degrade performance;

require credentials, which are tricky to manage.

Thiemann Testing Python 14 Oct 2019 54 / 67

Example with Dependency

import requests
def most_common_word_in_web_page(words, url):

"""
finds the most common word from a list of words in a web page, identified by its URL
"""
response = requests.get(url)
text = response.text
word_frequency = {w: text.count(w) for w in words}
return sorted(words, key=word_frequency.get)[-1]

if __name__ == ’__main__’:
most_common = most_common_word_in_web_page(

[’python’, ’Python’, ’programming’],
’https://python.org/’,
)

print(most_common)

Thiemann Testing Python 14 Oct 2019 55 / 67

How to Test This Example?

At the time of writing, this program prints Python, but who knows what
happens tomorrow?

A testing environment (in particular on a CI-Server) may not support network
connections.

There are several approaches to testing such examples

1 Modularity: separate program logic from resource access
Advantage: always a good idea
Disadvantage: the actual resource access is never tested

2 Abstraction and mocking: abstract over the resource and supply a fake resource
during testing
Advantage: can test entire code
Disadvantage: mocking must accurately mimic the resource’s behavior

3 Patching: overwrite functionality of the resource during testing

Thiemann Testing Python 14 Oct 2019 56 / 67

Example: Modularity

import requests
def most_common_word_in_web_page(words, url):

response = requests.get(url)
return most_common_words (words, response.text)

def most_common_words (words, text):
word_frequency = {w: text.count(w) for w in words}
return sorted(words, key=word_frequency.get)[-1]

if __name__ == ’__main__’:
most_common = most_common_word_in_web_page(

[’python’, ’Python’, ’programming’],
’https://python.org/’,
)

print(most_common)

Standard unit testing applicable to most_common_words

Thiemann Testing Python 14 Oct 2019 57 / 67

Example: Abstraction and Mocking

Abstract over the requests module

def most_common_word_in_web_page(words, url, useragent=requests):
response = useragent.get(url)
return most_common_words (words, response.text)

For useragent, we can supply any object that has a get method that returns an
object with a text field.

def test_with_dummy_classes():
class TestResponse():

text = ’aa bbb c’
class TestUserAgent():

def get(self, url):
return TestResponse()

result = most_common_word_in_web_page(
[’a’, ’b’, ’c’],
’https://python.org/’,
useragent=TestUserAgent()

)
assert result == ’b’

Thiemann Testing Python 14 Oct 2019 58 / 67

Example: Abstraction and Mocking (continued)

Writing dummy objects can become tedious

Fortunately, they can be replaced by configurable mock objects

def test_with_mock_objects():
from unittest.mock import Mock
mock_requests = Mock()
mock_requests.get.return_value.text = ’aa bbb c’
result = most_common_word_in_web_page(

[’a’, ’b’, ’c’],
’https://python.org/’,
useragent=mock_requests

)
assert result == ’b’
assert mock_requests.get.call_count == 1
assert mock_requests.get.call_args[0][0] == ’https://python.org/’

Thiemann Testing Python 14 Oct 2019 59 / 67

Example: Abstraction and Mocking (continued)

Mock objects appear quite magical

mock_requests.get creates a new mock object in mock_requests’s get
property

mock_requests.get.return_value implies that this mock is a function
that returns another mock object

mock_requests.get.return_value.text . . . which in turn has a
text property

mock_requests.get.return_value.text = ’...’ . . . which is set
to a string

Thiemann Testing Python 14 Oct 2019 60 / 67

A Simple Example with Mocks

from unittest.mock import Mock

def test_mock():
mock = Mock()
mock.x = 3
mock.y = 4
mock.distance.return_value = 5
assert mock.x * mock.x + mock.y * mock.y == \

mock.distance() * mock.distance()
assert mock.distance.call_count == 2
mock.distance.assert_called_with()

define two properties x and y

define a method distance

check functionality

check that distance is called twice

check it’s called with the right arguments (no arguments)

Thiemann Testing Python 14 Oct 2019 61 / 67

Example: Patching

Overwrite the functionality of the resource during testing

Thiemann Testing Python 14 Oct 2019 62 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 63 / 67

Separating Tests from User Code

Tests and application code should live in separate files

Typical setup

application code in a module
test code in another module in a different directory

Customarily, test code lives in a subdirectory called tests

Thiemann Testing Python 14 Oct 2019 64 / 67

Structure of a Python application

Project name: sample

Exposes module (package): sample

README.md
LICENSE
setup.py
requirements.txt
sample/__init__.py
sample/core.py
sample/helpers.py
docs/conf.py
docs/index.md
conftest.py
tests/test_basic.py
tests/test_advanced.py

See https://github.com/kennethreitz/samplemod

Thiemann Testing Python 14 Oct 2019 65 / 67

https://github.com/kennethreitz/samplemod

Structure of a Python Application

Structure of a Python package

A package is a module consisting of several source files in a directory

It should contain a special file __init__.py

Typically this file imports the exposed names from the other files in the directory

Testing a Python Application

pytest is invoked in the root directory

Recursively looks for file names beginning with test_ and executes them

Each test file imports application modules relative to the project root

conftest.py (empty file in the project root) indicates the project root
directory to pytest

Thiemann Testing Python 14 Oct 2019 66 / 67

Structure of a Python Application

Structure of a Python package

A package is a module consisting of several source files in a directory

It should contain a special file __init__.py

Typically this file imports the exposed names from the other files in the directory

Testing a Python Application

pytest is invoked in the root directory

Recursively looks for file names beginning with test_ and executes them

Each test file imports application modules relative to the project root

conftest.py (empty file in the project root) indicates the project root
directory to pytest

Thiemann Testing Python 14 Oct 2019 66 / 67

Plan

1 Testing Python
Let’s Test
pytest
Testing with Numbers
Exercise

2 Continuous Testing
On-Premise Server
Software as a Service

3 More Testing Secrets
Testing the Bad Case
Depending on External Resources
Structuring Test Suites

4 The End

Thiemann Testing Python 14 Oct 2019 67 / 67

	Testing Python
	Let's Test
	pytest
	Testing with Numbers
	Exercise

	Continuous Testing
	On-Premise Server
	Software as a Service

	More Testing Secrets
	Testing the Bad Case
	Depending on External Resources
	Structuring Test Suites

	The End

