
J2EE-Praktikum
JDBC

Peter Thiemann

Universität Freiburg

J2EE-Praktikum, WS2005/2006

Inhalt

1 Einführung
JDBC Features
Four Types of Drivers
Choosing a Driver

2 Verwendung
Portability

Was ist JDBC?

JDBC = Java DataBase Connectivity

Java API for access to SQL databases (SQL = Structured
Query Language)

Inspired by ODBC (Open DataBase Connectivity)
Accesses database through JDBC drivers

JDBC methods transmit SQL commands as strings to a
database
"select name, lastname, salary from
personnel where lastname = ’Smith’"
Database performs SQL commands and delivers the
requested data and success or failure messages
JDBC methods read data delivered from the database

JDBC Features

Query, insert, and update database content
Support for

transactions
cursors
prepared statements and stored procedures
metadata (e.g., column names)

JDBC Application

Application

JDBC

DBMS

Four Types of Drivers

Application

JDBC

DBMS

JDBC−ODBC
Bridge

ODBC

DB Library

Native Library

DB Library Middleware

JDBC Net Driver Native Protocol

Type 1 Drivers

JDBC−ODBC
Bridge

ODBC

DB Library

DBMS

JDBC

Application

Type 1 drivers implement the JDBC API
as a mapping to another data access API,
such as ODBC. Drivers of this type are
generally dependent on a native library,
which limits their portability. The JDBC-
ODBC Bridge driver is an example of a
Type 1 driver.
From JDBC API Specification

JDBC-ODBC Bridge

Properties of Type 1 Drivers

Advantages

The same Type 1 JDBC driver can communicate with every
database system for which an ODBC driver is available.

Very simple driver.

Disadvantages

Platform dependent (Microsoft)
ODBC must be installed
DB must support ODBC driver

Use discouraged if pure Java driver available

Type 2 Drivers

Native Library

DB Library

Application

JDBC

DBMS

Type 2 drivers are written partly in the Ja-
va programming language and partly in
native code. These drivers use a native
client library specific to the data source
to which they connect. Again, because of
the native code, their portability is limited.
From JDBC API Specification

Native API driver

Properties of Type 2 Drivers

Advantages

More functionality: tailored to the features of the database
by vendor

Better performance: avoids overhead of ODBC

Disadvantages

Dependent on native code that makes the final database
calls

Tied to a specific operating system/architecture

Reduced interoperability (compared to Type 4)

Type 3 Drivers

Middleware

JDBC Net Driver

Application

JDBC

DBMS

Type 3 drivers use a pure Java client and
communicate with a middleware server
using a database-independent protocol.
The middleware server then communica-
tes the client’s requests to the data sour-
ce.
From JDBC API Specification

Network protocol driver

Properties of Type 3 Drivers

Advantages

Platform independence through use of Java

Database-independent communication protocol⇒ can be
used with many different databases

Middleware (application server) offers additional security
and flexibility

Disadvantages

Dependent on particular middleware implementation

Restricted to databases supported by middleware

Type 4 Drivers

Native Protocol

Application

JDBC

DBMS

Type 4 drivers are pure Java and imple-
ment the network protocol for a specific
data source. The client connects directly
to the data source.
From JDBC API Specification

Native Protocol Driver

Properties of Type 4 Drivers

Advantages

No system dependent drivers or libraries

Better performance than Type 1 and Type 2 drivers by
avoiding call conversion

Better performance than Type 3 by avoiding protocol
conversion

Disadvantages

Driver specific to particular database

Migration to different database requires new driver

Not generally offered by DB vendors

Avoid Type 1 and Type 3 if possible

Reasons for using a Type 1 driver

No Type 2 or Type 4 driver exists for the DBMS

Application has a specific target platform

Reasons for using a Type 3 driver

No Type 4 driver exists for the DBMS

Choose between Type 2 and Type 4

Choose Type 4 if portability is critical

For server applications, Type 2

Choose Type 4 if it is known to be more efficient

Verwendung von JDBC

Laden des JDBC-Treibers

Aufbau von Verbindungen zur Datenbank

Absetzen von SQL-Statements und Verarbeitung der
Ergebnisse

Schließen von Verbindungen zur Datenbank

Programmmuster

// load JDBC-driver
Class.forName("oracle.jdbc.driver.OracleDriver");

// create connection
String url = "jdbc:oracle:thin:@131.159.30.26:1521:dbprak";
Connection conn = DriverManager.getConnection (url, "name", "passwd");
conn.setAutoCommit(true);

// execute statement
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM personnel");
// Ergebnisse verarbeiten
rs.close();

// commit
conn.commit();

// close connection
conn.close();

Methoden von java.sql.Connection

Isolationslevel
setTransactionIsolation(int level);

Savepoint-Unterstützung

rollback(Savepoint savePoint);

Savepoint setSavepoint();

releaseSavepoint(Savepoint savePoint);

Commits/Rollback
setAutoCommit(boolean autoCommit);

commit();

rollback();

Transaktionsunterstützung

TRANSACTION_NONE
no transaction support

TRANSACTION_READ_UNCOMMITTED
allows a row changed by one transaction to be read by another
transaction before any changes in that row have been
committed (a "dirty read"). If any of the changes are rolled
back, the second transaction will have retrieved an invalid row.

TRANSACTION_READ_COMMITTED

prohibits a transaction from reading a row with uncommitted
changes in it.

Transaktionsunterstützung/2

TRANSACTION_REPEATABLE_READ

prohibits a transaction from reading a row with uncommitted
changes in it, and it also prohibits the situation where one
transaction reads a row, a second transaction alters the row,
and the first transaction rereads the row, getting different values
the second time (a "nonrepeatable read").

TRANSACTION_SERIALIZABLE

enforces TRANSACTION_REPEATABLE_READ and further
prohibits the situation where one transaction reads all rows that
satisfy a WHERE condition, a second transaction inserts a row
that satisfies that WHERE condition, and the first transaction
rereads for the same condition, retrieving the additional
"phantom" row in the second read.

Dirty Read

; transaction #1 transaction #2

UPDATE product
SET unit_price =

unit_price + 95
WHERE

NAME = ’T Shirt’;

SELECT SUM(quantity * unit_price)
FROM product;

ROLLBACK;
UPDATE product

SET unit_price =
unit_price + 0.95

WHERE
NAME = ’T Shirt’;

Non-repeatable Read

; transaction #1 transaction #2

SELECT unit_price
FROM product
WHERE

NAME = ’T Shirt’;

UPDATE product
SET unit_price = 17.50
WHERE NAME = ’T Shirt’;

COMMIT;

SELECT unit_price
FROM product
WHERE

NAME = ’T Shirt’;

Phantom Row

; transaction #1 transaction #2

SELECT * FROM department
ORDER BY dept_id;

INSERT INTO department
(dept_id, dept_name, dept_head_id)

VALUES(600, ’Foreign Sales’, 129);
COMMIT;

SELECT * FROM department
ORDER BY dept_id;

Guarantees of Transaction Levels

non-repeatable phantom
TRANSACTION_. . . dirty read read read

NONE yes yes yes
READ_UNCOMMITTED yes yes yes

READ_COMMITTED no yes yes
REPEATABLE_READ no no yes

SERIALIZABLE no no no

Simple Statements

conn = ds.getConnection();
stmt = conn.createStatement();

// for select statements
if (stmt.execute("SELECT * FROM product WHERE NAME = ’T Shirt’"))

ResultSet rs = stmt.getResultSet();

ResultSet rs =
executeQuery("SELECT * FROM product WHERE NAME = ’" +name+ "’");

// for insert and update
int nRows = stmt.executeUpdate(

"UPDATE product SET unit_price = " +
" unit_price + " + newPrice +
" WHERE NAME = ’T Shirt’");

java.sql.ResultSet

ResultSet contains result of query as a table

processing using a cursor

rs.next(); // advance to next row

rs.previous(); // previous row (don’t use)

rs.absolute(5); // absolute row position

rs.relative(5); // relative positioning

rs.first();

rs.last();

changes through result set (if so configured)
rs.deleteRow();
rs.updateString("name", "Turing");
rs.updateRow(); // flush update

java.sql.ResultSet

read from result set
rs.getString(5) // get column 5
rs.getString("unit_price")
// get column by name (don’t use)
rs.getLong(5) // retrieve a long
etc . . .

insert in result set (if so configured)
rs.moveToInsertRow(); // special row, remembers
current row
rs.updateString(1, "Turing");
rs.updateInt(2, 35);
rs.updateBoolean(3, true);
rs.insertRow(); // insert in DB
rs.moveToCurrentRow(); // pop back to current row

Code Example

Statement stmt = dbcon.createStatement();
ResultSet result = stmt.executeQuery("SELECT * FROM books");
while (result.next()) {

int id = result.getInt(1); // getInt("ID")
String title = result.getString("Title"); // getString(2)
String subtitle = result.getString(3); // getString("subtitle")
String author = result.getString(4); // getString("author")
int year = result.getInt("Year"); // getInt(5)

}

java.sql.PreparedStatement

defines statement template

using ? as placeholder

sent to the DBMS for precompilation

can be instantiated and executed with different values

PreparedStatement ps =
conn.prepareStatement(

"UPDATE employees SET salary = ? WHERE id = ?");
ps.setBigDecimal(1, 153833.00);
ps.setInt(2, 110592);
ps.execute();

Metadata

DatabaseMetaData dbmd = conn.getMetaData();
DB version
specific features
infos about schemas, tables, keys, etc

ResultSetMetaData metaData =
rs.getMetaData();

columns, column names, column types
potentially inefficient: entire result set may have to be
constructed before meta data is available

Portability of Applications

Modern application programs, especially Java programs, should
be portable.

Sun marketing slogan: WORA (Write once, run anywhere)

Portable JDBC programs only with of Type 3 and Type 4 drivers.

They do not contain computer or operating system-specific code.

JDBC supplies a unified interface.

SQL is a standardized query language for databases.

But:

Not every database system supports all JDBC functions.

Database manufactures maintain own SQL dialect with further
functions and commands that cannot be used any more on other
database systems, in case of migration.

Portability of JDBC Applications

Theoretically only exchange of JDBC drivers is required (1 File).

In practice: manual checking if the new DBMS understands the
SQL dialect used.

The parts of the program, in which non-standard SQL
commands are sent, must be adapted to the new DBMS.

Concentrate the SQL instructions and SQL generation in a few,
central classes, if possible.

Avoid SQL language constructs that can only be processed by a
specific database system.

Avoid database-specific SQL data types in table definition.

Use SQL Data types for which equivalent types exist in other
database systems.

Perform customization via properties.

	Einführung
	JDBC Features
	Four Types of Drivers
	Choosing a Driver

	Verwendung
	Portability

