
J2EE-Praktikum
Transaktionen

Peter Thiemann

Universität Freiburg

J2EE-Praktikum, WS2005/2006



Inhalt

1 Einführung
ACID Properties

2 Transactions and EJB
EJB Transaction Attributes

3 Explicit Transaction Control



What is a transaction?

(general) Agreement, communication, or movement
carried out between separate entities
(database) Sequence of operations that must either
succeed altogether or fail
Example: transfer 200 EUR between bank accounts A and
B

1 withdraw 200 EUR from A
2 deposit 200 EUR in B

Both must succeed for a successful transfer



Transactions must be ACID

Atomic either all operations succeed or the whole
transaction fails

Consistent the database must be in consistent state before
and after the transaction (e.g., all integrity
constraints must hold)

Isolated The effects of incomplete transactions should be
invisible to other transactions as much as possible.

Durable Changes are permanent when the transaction
completes successfully.



ACID and the Bank Account

Atomic withdrawal and deposit must take place
Consistent the amount withdrawn must equal the amount

deposited
Isolated other transactions must not be able to observe the

withdrawal from A before the deposit in B has
taken place

Durable if DB crashes . . .
before the transaction completes, no effect is
visible
after the transaction completes, the transfer is
permanent



Transaction Control in EJBs

Explicit Transaction Control
explicit demarcation of transactional events via JTS
SQL: START TRANSACTION, END TRANSACTION,
ROLLBACK, COMMIT
SAVEPOINT name, ROLLBACK TO SAVEPOINT name,
RELEASE SAVEPOINT name

error prone, mixup with business logic, inflexible

Implicit Transaction Control
via EJB deployment descriptor
separate from business logic, more flexible



Transactions and EJB

Transaction
begins with client invoking a bean (business) method
ends (commits) successful with normal exit of this
invocation
may fail (rollback) if there is an exception during the
invocation

Operations = bean methods invoked during a transaction
Scope of Transaction = all EJBs involved in performing the
task of the invoked business method
Transaction may be passed on to subsidiary bean method
invocations (depending on transaction attributes)



Setting Transaction Attributes
In the Deployment Descriptor

<ejb-jar ...> ...
<assembly-descriptor> ...

<container-transaction>
<method>

<ejb-name>TravelAgentEJB</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
<container-transaction>

<method>
<ejb-name>TravelAgentEJB</ejb-name>
<method-name>listAvailableCabins</method-name>

</method>
<trans-attribute>Supports</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>



EJB Transaction Attributes

Attribute Values
NotSupported

Supports

Required

RequiresNew

Mandatory

Never

Not all of them must be implemented by EJB container
Not all make sense for every kind of EJB



Semantics of Transaction Attributes/1

NotSupported

Method runs outside the scope of a transaction
Invoking the method suspends current transaction (if any)
Exiting the method resumes the suspended transaction

Supports

Method may run outside of transaction
If there exists a current transaction, then this method
becomes part of it.



Semantics of Transaction Attributes/2

Required

Method must run inside a transaction
If no transaction is current at invocation, then create a new
transaction.

RequiresNew

Method must run inside a new transaction created afresh
for the each invocation (and its descendants)



Semantics of Transaction Attributes/3

Mandatory

Method must run inside a preexisting transaction
Invocation will not create a new transaction
It is an error to call method outside a transaction

Never

Method must not run inside a transaction
It is an error to call method inside a transaction



Bean Types and Transaction Attributes

CMP Entity Beans
Required, RequiresNew, Mandatory are always
supported and should be used
vendor support for Never, Supports, and
NotSupported is optional (but not recommended)

Message-driven Beans
NotSupported or Required
Other attributes are relative to transaction context
Such context does not exist by invocation through a
message queue

Endpoints (Webservices)
all except Mandatory



Guarantees Through Transactions

Transaction levels configurable on the application server
Transaction isolation levels as with JDBC

Read Uncommitted
Read Committed (No dirty reads)
Repeatable Read (+ no nonrepeatable read)
Serializable (+ no phantom read)

The higher the transaction level
the more guarantees provided
the slower

Different isolation levels for different methods possible



Explicit Transaction Control

Don’t use unless forced to!
In deployment descriptor:
<session> ...
<transaction-type>Bean</transaction-type> ...

</session>

Obtain JTS UserTransaction object
Context jndiCtx = new InitialContext();
UserTransaction ut = (UserTransaction)
jndiCtx.lookup ("java:comp/UserTransaction");

ut.begin();
// transactional stuff
ut.commit();

Or through EJB context
ejbContext.getUserTransaction()



The UserTransaction Interface

public interface UserTransaction {
void begin() throws

NotSupportedException, SystemException;
void commit() throws

RollbackException, HeuristicMixedException,
HeuristicRollbackException, SecurityException,
IllegalStateException, SystemException;

void rollback() throws IllegalStateException,
SecurityException, SystemException;

void setRollbackOnly() throws
IllegalStateException, SystemException;

int getStatus() throws
SystemException;

void setTransactionTimeout(int seconds) throws
SystemException;

}


	Einführung
	ACID Properties

	Transactions and EJB
	EJB Transaction Attributes

	Explicit Transaction Control

