
Principles of Programming Languages

Peter Thiemann

July 3, 2015

1 Introduction

Contents of the course

• concepts used in programming languages

• prerequisite: semantics

– vocabulary for talking about programming languages

– tools for describing the meaning of programs

– techniques for reasoning about programs

Why?

• Understand programs

• Verify program transformations

• Verify compilers

• Verify static analyses

Task of semantics: formally assign meaning to a program text
Two facets of semantics

Static semantics: defines well-formedness of a program (beyond mere syntac-
tical correctness)

Dynamic semantics: describes execution or evaluation of a program

Requires formalization of

• syntax (program text)

• semantics (well-formedness conditions, evaluation)

1.1 Syntax

Traditionally, the syntax of a programming language is described in two steps,
lexical syntax and context-free syntax.

1

1.1.1 Lexical Syntax

The lexical syntax defines the “atoms” of the language in terms of regular lan-
guages. The lexical analysis (or scanner or lexer) of a compiler partitions a
program into lexemes and maps them into tokens. (Lexemes are sequences of
input characters, tokens are symbolic values.)

Example: Typical lexeme classes are identifiers, numeric literals, opening
and closing parentheses, and keywords

class regexp example token
identifier [A-Za-z][A-Za-z0-9]* Catch22 ident(Catch22)
numeric lit [-+]?[0-9]+ -42 num (42)

opening par ((openingPar
closing par)) closingPar
keyword while while kwWhile

The scanner typically ignores whitespace, that is sequences of spaces, tabu-
lators, line feeds, and so on. The scanner also removes comments.

Formally, a scanner is a partial surjective function

scan : Char∗ → Token∗

so that there exists a function

unscan : Token∗ → Char∗

satisfying
scan = scan ◦ unscan ◦ scan

1.1.2 Context-free Syntax

The context-free syntax of the language is given by a context-free grammar G in
terms of the tokens determined by the lexical analysis. The parser for G maps
a token sequence to a derivation tree of G or fails if the token sequence is not
in the language.

Formally, a parser is a partial, surjective function

parse : Token∗ → tree(G)

so that there exists a function

unparse : tree(G)→ Token∗

satisfying
parse = parse ◦ unparse ◦ parse

The grammar is used for parsing is not the most natural grammar for the
language. It is written so that it is not ambiguous, so that linear-time parsing
is possible, and so that properties like operator precedences can be encoded.

2

For example, the following grammar is popular for parsing infix expressions.

〈expr 〉 → 〈factor 〉
〈expr 〉 → 〈expr〉−〈factor 〉
〈factor 〉 → 〈atom〉
〈factor 〉 → 〈factor 〉/〈atom〉
〈atom〉 → a

〈atom〉 → (〈expr 〉)

It reflects the convention that / binds tighter than - and that both associate to
the left.

Exercise: Draw a derivation tree for a / a - (a - a / a).

1.1.3 Abstract Syntax

Much of the structure of the derivation tree of a grammar suitable for parsing
is irrelevant for the meaing of an expression. For that task, a much simpler
structure is sufficient, the abstract syntax :

e ::= e−e | e/e | a

The point of this grammar is not the set of strings derivable from it, but
rather the set of its derivation trees, the abstract syntax trees.

Exercise: (not that easy) suppose that tree (G) describes concrete syntax
trees and tree (A) describes abstract syntax trees. Develop a specification
for mkAST : tree(G) → tree(A) which makes sure that the set tree (A) all
interesting information but is also sufficiently abstract. (So the second part of
the specification has to justify the choice of A, somehow.)

Technically, an abstract syntax is a set of terms given by a signature of
operation symbols (the above grammar is a common, but sloppy way of writing
that signature). Alternatively, the non-terminals of the grammar are considered
as types and an explicit signature specifies the restrictions.

− : 〈expr〉 × 〈expr〉 → 〈expr〉
/ : 〈expr〉 × 〈expr〉 → 〈expr〉
a : → 〈expr〉

Some programming languages have builtin support for defining signatures
of term forming operators (constructors). For example, Objective Caml allows
the following definition for the type expr:

type expr = subExpr of expr * expr

| divExpr of expr * expr

| conExpr

(The lexemes / and - cannot be used because they are predefined by the Ob-
jective Caml language.)

Exercise: Take a fragment of JavaScript’s grammar and define a set of ab-
stract syntax trees for that fragment. Implement your abstract syntax in a
programming language of your choice.

3

1.2 Semantics

There are a number of techniques for specifying the semantics of a program-
ming language. All of them start with a mapping from abstract syntax into a
mathematical model. The three main approaches are

• denotational

• operational

• axiomatic.

Denotational semantics models the meaning of a program phrase by a math-
ematical object. It is just concerned with the result, not with the individual
computation steps. Nevertheless, a denotational semantics often looks like an
interpreter and is sometimes implementable as such. One key idea in deno-
tational semantics is compositionality: the meaning of a program phrase is a
function of the meanings of its direct subphrases.

Operational semantics describes the individual computation steps and how
they must be put together to obtain the result of a program run. It comes in
two flavors, natural semantics and structural operational semantics.

• Natural semantics (also called big-step or evaluation-style semantics) spec-
ifies the relation between a program phrase, auxiliary information, and the
result of evaluating the phrase.

• Structural operational semantics (also called small-step semantics) speci-
fies an evaluation state and individual computation steps that relate suc-
cessive states.

A further possibility is a reduction semantics which just specifies the possible
computation steps but leaves some latitude where the steps might be applied.

Axiomatic semantics specifies pre- and postconditions for each kind of phrase
and relies on a logic to put these together to statements about entire programs.
It is well-suited to proving partial correctness of a program.

The focus of this course will be on denotational and operational techniques.
The example of an expression semantics illustrates both styles. The abstract

syntax is slightly modified to avoid problems with modeling the partiality of
division.

Expr ∋ e ::= e+e | e∗e | a

In each style, the example neither exercises the full power of the style nor
does it touch upon its limitations. The style is informal to provide a first idea
of what it is about.

1.2.1 Example: Denotational Semantics

Every denotational semantics starts with defining the mathematical domains
used for modeling the syntactic phrases. In the example, there is just one

4

domain involved, the domain of denoted values. Denoted values are all values
that are potential evaluation results.

Val = N

The denotational semantics is a function which is defined by induction on
the abstract syntax. It is customary to enclose syntactical domains in double
brackets (also called “semantic brackets” or “Strachey bracket” in honor of
Christopher Strachey, one of the inventors of denotational semantics).

E : Expr→ Val

C : Const→ Val

EJaK = CJaK
EJe1+e2K = EJe1K + EJe2K
EJe1∗e2K = EJe1K · EJe2K

where C, the interpretation function for constants, is left unspecified.
Assuming that C maps the decimal representation of a number to its value,

the semantics of an expression is its usual value.

EJ(2 + 3) ∗ (5+ 2)K = 35
EJ0K = 0

Exercise: Define the interpretation function for constants in binary repre-
sentation based on the following abstract syntax (ε stands for the empty string):

c ::= ε | 0c | 1c

Exercise: Define an abstract syntax for binary fractions and give their inter-
pretation function.

1.2.2 Example: Small-Step Operational Semantics

A small-step semantics is often specified via a term rewriting of abstract syntax
trees. A term rewriting system is defined through a set of rules that denote the
replacement of a subterm by another term.

In the present case, the following rewriting rules capture the behavior of +
and *.

a1+a2 −→ a3
b1∗b2 −→ b3

if CJa1K+CJa2K = CJa3K and CJb1K · CJb2K = CJb3K. Application of a rewrite rule
to a term consists in finding a subterm that looks like the left side of the rule
and replacing it with the right side.

These two (families of) rules would already suffice to define a reduction
semantics. Such a semantics allows the application of a rule whereever it is

5

possible. It is inherently non-deterministic.

(2+ 3) ∗ (5 + 2)
−→ (2+ 3) ∗ 7
−→ 5 ∗ 7
−→ 35

A structural operational semantics consists of reduction rules and a strategy
of how to apply the rules. This strategy is usually deterministic, but non-
deterministic systems are used for defining concurrent language features.

The above reduction sequence corresponds to a right-to-left evaluation strat-
egy. In practice, left-to-right evaluation is more common.

(2+ 3) ∗ (5 + 2)
−→ 5 ∗ (5+ 2)
−→ 5 ∗ 7
−→ 35

How does such a semantics now when it is finished? A reduction sequence
is finished when the final term is a member of a predefined set of terms, the set
of values. In the example, the set of values is the subset of expressions specified
by

v ::= a

Exercise: Add division / to the abstract syntax. Define the rule family for
division and discuss what happens with terms like 5+(3/0).

1.2.3 Example: Big-Step Operational Semantics

A big-step operational semantics relates an expression directly to its value. Ex-
pressions and values are as before (but this is coincidental):

e ::= e+e | e∗e | a
v ::= a

The relation →֒⊆ Exp×Z is defined through a deduction system by induction
on the abstract syntax of the expression. The evaluation of constants just relates
a constant to its meaning.

a →֒ CJaK

For addition as well as for multiplication, first the two subexpressions need to
be evaluated. Then, the operation is performed and the resulting value returned.

e1 →֒ v1 e2 →֒ v2
e1+e2 →֒ v1 + v2

e1 →֒ v1 e2 →֒ v2
e1∗e2 →֒ v1 · v2

To compute the value of an expression, the deduction rules are pasted to-
gether to a proof tree with the expression at the root.

2 →֒ 2 3 →֒ 3
2+ 3 →֒ 5

5 →֒ 5 2 →֒ 2
5+ 2 →֒ 7

(2+ 3) ∗ (5 + 2) →֒ 35

6

2 Terms, Substitutions, and Identities

Terms play a central role in the theory of programming languages. They serve
to define the abstract syntax, they define computation states in operational
semantics, and they serve as domain of computation in logic programming.

This section is derived from Chapter 3 of the book Term Rewriting and All
That by Franz Baader and Tobias Nipkow, Cambridge University Press, 1998.
Universal algebra investigates terms and interpretations of terms in more detail.

Definition 1 A signature Σ is a set of operation symbols with a function a :
Σ→ N indicating the arity of each symbol. Write Σ(n) for {f ∈ Σ | a(f) = n}.
Call the elements of Σ(0) constant symbols.

Example: Σexpr = {a
(0),+(2), ∗(2)} with superscripts indicating the arity.

In many cases, we want to distinguish between different sorts (types) of ar-
guments and results, drawn from a set S. In this case, the arity generalizes from
a natural number to a pair (w, s) where w ∈ S∗ and s ∈ S. Such a signature
is called a many-sorted signature or heterogeneous signature, whereas the above
definition is one-sorted or homogeneous. Since all results and definitions gener-
alize easily to the many-sorted case, we’ll stick with the one-sorted signatures
to avoid clutter.

Definition 2 Let Σ be a signature and X be a set of variables with Σ∩X = ∅.
The set T (Σ, X) of Σ-Terms over X is inductively defined by

• X ⊆ T (Σ, X)

• for each n ∈ N, if t1, . . . , tn ∈ T (Σ, X) and f ∈ Σ(n), then f(t1, . . . , tn) ∈
T (Σ, X).

Examples: Using Σexpr from above andX = {x, y, z} the following are terms:

x
a()
+(a, y)
∗(+(z, a), y)

For convenience, write a instead of a() and use infix notation if that’s unam-
biguous, e.g., (a+y).

Terms may be considered as ordered trees, which gives a nice graphical
rendering.

The tree intuition naturally gives rise to the concept of a position in a term.

Definition 3 Let Σ be a signature, X be a set of variables with Σ ∩ X = ∅,
and s, t ∈ T (Σ, X).

1. The set of positions of a term is defined by a function Pos(·) : T (Σ, X)→
N∗

7

• for all x ∈ X ,
Pos(x) = {ε}

• for all f(t1, . . . , tn) ∈ T (Σ, X),
Pos(f(t1, . . . , tn)) = {ε} ∪

⋃n
i=1 i.Pos(ti)

Position ε is the root position and the symbol at that that position is the
root symbol.

2. The size of a term is its number of positions: |s| = |Pos(s)|.

3. For p ∈ Pos(s), the subterm of s at position p, s|p, is defined by

s|ε = s
f(t1, . . . , tn)|i.p = ti|p

4. For p ∈ Pos(s), s[t]p denotes the term obtained from s by replacing the
subterm at position p by t.

s[t]ε = t
f(t1, . . . , tn)[t]i.p = f(t1, . . . , ti[t]p, . . . , tn)

5. The set of variables occurring in s, Var(s) is defined by

Var(x) = {x}
Var(f(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn)

Example (continued):

t Pos(t) Var(t) |t|
x {ε} {x} 1
a() {ε} ∅ 1
+(a, y) {ε, 1, 2} {y} 3
∗(+(z, a), y) {ε, 1, 1.1, 1.2, 2} {y, z} 5

A term t ∈ T (Σ, x) is a ground term if Var(t) = ∅.
Exercise: A term may also be considered as a function from a set of posi-

tions (⊆ N∗) to symbols (variables or operation symbols). Rewrite the above
definitions from that point of view.

Exercise: Lemma 3.1.4 in Term Rewriting contains four simplification rules
about subterms and subterm replacement. Prove them by induction.

Definition 4 Let Σ be a signature andX be a countably infinite set of variables
with Σ ∩ X = ∅. A T (Σ, X)-substitution is a function σ : X → T (Σ, X) such
that the set

Dom(σ) = {x ∈ X | σ(x) 6= x}

(the domain of σ) is finite.

8

The range of σ is the set of terms Ran(σ) = {σ(x) | x ∈ Dom(σ)} and the
variable range of σ is VRan(σ) =

⋃
t∈Ran(σ) Var(t).

Any T (Σ, X)-substitution σ can be extended to a function σ̂ : T (Σ, X) →
T (Σ, X) by

σ̂(x) = σ(x)

σ̂(f(t1, . . . , tn)) = f(ˆsigma(t1), . . . , σ̂(tn))

Notation:

• if Dom(σ) = {x1, . . . , xn}, then write σ = {x1 7→ σ(x1), . . . xn 7→ σ(xn)}.

• the distinction between σ and σ̂ is dropped most of the time.

Example: Let t = ∗(+(z, a), y) and σ = {y 7→ a, z 7→ +(z, a)}.

Definition 5 Let σ, τ be T (Σ, X)-substitutions. Their composition στ is de-
fined by στ(x) = σ̂(τ(x)).

Exercise: Show that composition is associative and that σ̂τ = σ̂τ̂ .

Definition 6 Let Σ be a signature andX be a countably infinite set of variables
with Σ ∩X = ∅.

A Σ-identity is a pair (s, t) ∈ T (Σ, X)× T (Σ, X), written as s ≈ t.
s is the left-hand side and t is the right-hand side of s ≈ t.

Example: +(+(x, y), z) ≈ +(x,+(y, z)) may be interpreted as saying that +
associative.

Definition 7 Let E be a set of Σ-identities. The reduction relation →E⊆
T (Σ, X)× T (Σ, X) is defined by

s→E t iff

(∃(l, r) ∈ E) (∃p ∈ Pos(s)) (∃σ) s|p = σ(l) ∧ t = s[σ(r)]p

Definition 8 Let E be a set of Σ-identities and →E its associated reduction
relation.

1. The reflexive transitive closure
∗
→E of →E is defined via a set of inference

rules

s
∗
→E s

s→E s′

s
∗
→E s′

s
∗
→E s′ s′

∗
→E s′′

s
∗
→E s′′

2. The reflexive transitive symmetric closure
∗
↔E of →E is defined by

s
∗
→E s

s→E s′

s
∗
→E s′

s′ →E s

s
∗
→E s′

s
∗
→E s′ s′

∗
→E s′′

s
∗
→E s′′

9

A set of rules such as above forms a deduction system and the following
definition makes precise how such a system works.

Definition 9 A deduction system consists of a signature Γ for forming judge-
ments and a set of inference rules.

A judgement is a term J ∈ T (Γ, V) where V is a countably infinite set of
variables disjoint from Γ.

An inference rule is a pair (J1 . . . Jn, J0) of a sequence of judgements J1 . . . Jn
and a judgement J0, written as

J1 . . . Jn
J0

A proof tree validating judgement J is defined inductively by:

• Let
J1 . . . Jn

J0
be an inference rule and σ a substitution so that J = σ(J0).

Let J1, . . . ,Jn be proof trees validating σ(J1), . . . , σ(Jn), respectively.

Then J =
J1 . . . Jn

J
is a proof tree validating judgement J .

Example: given the identity +(+(x, y), z) ≈ +(x,+(y, z)) for associativity
of + establish that

+(+(+(x, y), z), w)
∗
↔E +(x, (+(y,+(z, w))))

+(+(+(x, y), z), w)→E +(+(x, y),+(z, w))

+(+(+(x, y), z), w)
∗
↔E +(+(x, y),+(z, w))

+(+(x, y),+(z, w))→E +(x, (+(y,+(z, w))))

+(+(x, y),+(z, w))
∗
↔E +(x, (+(y,+(z, w))))

+(+(+(x, y), z), w)
∗
↔E +(x, (+(y,+(z, w))))

Example: big-step evaluation in previous section.

10

3 Algebras

The central idea of denotational semantics is to map an abstract syntax tree to
a value in a mathematical structure that denotes the meaning of the tree. In
addition, this mapping must be compositional, that is, the meaning of a phrase
is a function of the meanings of its subphrases.

If we consider abstract synax trees as terms, then the above statement means
that denotational semantics requires a mechanism to define a mapping from a
set of terms to a set of meanings (the denotations of terms). Furthermore, com-
positionality means that this mapping must be defined by the interpretations
of the term constructors (the operation and constant symbols). This matches
exactly the concept of an algebra over a signature. (Once again, the presenta-
tion sticks to the one-sorted case; the transliteration to the many-sorted case is
straightforward but tedious).

This section is derived from Chapter 3 of the book Term Rewriting and All
That by Franz Baader and Tobias Nipkow, Cambridge University Press, 1998.

Definition 10 Let Σ be a signature. A Σ-algebra A = (A,α) consists of

• a carrier set A and

• a mapping α so that, for all n ∈ N, f ∈ Σ(n), α(f) : An → A.

Sometimes the mapping α is left implicit by writing fA instead of α(f).
Example: The “expected” algebra for Σexpr = {a(0),+(2), ∗(2)} is Z = (A,α)

with A = Z and α defined by

α(a) = CJaK
α(+)(v1, v2) = v1 + v2
α(∗)(v1, v2) = v1 · v2

Definition 11 Let Σ be a signature and A, B be Σ-algebras.

1. B is a subalgebra ofA if B ⊆ A and, for all n ∈ N, f ∈ Σ(n), b1, . . . , bn ∈ B,
it holds that fA(b1, . . . , bn) = fB(b1, . . . , bn) ∈ B.

2. The subalgebra B is generated by a set X if B is the smallest algebra such
that X ⊆ B.

Example: Consider again Σexpr. The algebra (B,α) with B = {2x | x ∈ Z}
is a subalgebra of Z above. It is generated by {2} or {−2}.

Exercise: Let A be a Σ-algebra.

1. Show that the intersection of two subalgebras of A is also a subalgebra of
A.

2. Show that the subalgebra generated by X is the intersection of all subal-
gebras whose carrier contains X .

11

Definition 12 Let A and B be Σ-algebras with carrier sets A and B. A Σ-
homomorphism h : A → B is a mapping from A to B such that for all n ∈ N,
f ∈ Σ(n), and a1, . . . , an ∈ A, it holds that

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

The usual notions of epimorphism, monomorphism, isomorphism carry over
from the underlying mapping to homomorphisms.

Example:

1. Let m ∈ N, m > 0. Then Zm is a Σexpr-algebra with carrier {0, 1, . . . ,m−
1} and fZm(z) = fZ(z) (mod m). The mapping h(x) = x (mod m) is a
Σexpr-homomorphism from Z to Zm.

2. Is there a non-trivial Σexpr-homomorphism from Z to itself?

Lemma 1 Let A, B be Σ-algebras with A generated by X. If h, g : A → B are
homomorphisms and, for all x ∈ X, h(x) = g(x), then h = g.

Proof: Since A is generated by X , its carrier A =
⋃

n∈N
An where

A0 = X

An+1 = An ∪ {f
A(a1, . . . , an) | n ≥ n, a1, . . . , an ∈ An, f ∈ Σ(n)}

By definition, h = g iff, for all a ∈ A, h(a) = g(a). Since A =
⋃

n∈N
An it is

sufficient to show that, for all n ∈ N, a ∈ An, h(a) = g(a). The proof is by
induction on n:

• Case 0. For A0 = X , this holds by the assumption.

• Case n + 1. Let a ∈ An+1. By definition of An+1, if a ∈ An, then the
induction hypothesis yields h(a) = g(a). Otherwise, a ∈ {fA(a1, . . . , an) |
n ≥ n, a1, . . . , an ∈ An, f ∈ Σ(n)}, that is, there exists n ∈ N, f ∈ Σ(n),
a1, . . . , an ∈ An, such that a = fA(a1, . . . , an). Since h and g are both
homomorphisms, it holds that

h(a) = h(fA(a1, . . . , an))

= fA(h(a1), . . . , h(an))

= fA(g(a1), . . . , g(an))

= g(fA(a1, . . . , an))

= g(a)

Definition 13 Let Σ be a signature and X be a set of variables with X∩Σ = ∅.
The Σ-term algebra T (Σ, X) has carrier T (Σ, X) and operations (with f ∈ Σ(n))

fT (Σ,X)(t1, . . . , tn) = f(t1, . . . , tn)

12

Theorem 1 If B is a Σ-algebra and ϕ : X → B is variable assignment, then
there is a unique homomorphism ϕ̂ : T (Σ, X)→ B.

Proof: The crucial steps are

• T (Σ, X) is generated by X

• ϕ̂ is a homomorphism defined by

– ϕ̂(x) = ϕ(x), for all x ∈ X ,

– ϕ̂(f(t1, . . . , tn)) = fB(ϕ̂(t1), . . . , ϕ̂(tn)), for all n ∈ N, f ∈ Σ(n),
t1, . . . , tn ∈ T (Σ, X).

• uniqueness follows with Lemma 1

For the case X = ∅ the above means that indeed every algebra (A,α) defines
a unique function from T (Σ, ∅)→ A. Hence, an algebra can be used to uniquely
define the denotational semantics of an abstract syntax. The semantic equations
typically employed serve as a notational device for defining such an algebra:

Jf(t1, . . . , tn)K = fA(Jt1K, . . . , JtnK)

13

4 Variables and Binding

Variables are placeholders for values. In a programming language, they serve
to avoid repeated computations, capture meaningful intermediate results, and
play an important role in parameter passing. The first round will ignore that
last role and concentrate on modeling variables in the three styles of semantics
under consideration.

The language in this section is Lev. Its abstract syntax extends the expres-
sion language form the introduction with a syntactic category of variables and
two new expression constructs, the let binding and the variable reference.

v ∈ Var

Exp e ::= v | a | e+e | let v = e in e

Var is a countably infinite set of variable names disjoint from expression con-
structors. The occurrence of v on the right-hand side is a shorthand for a term
constructor that maps a variable name to an expression. Similarly, let is a term
constructor that maps a variable name and two expressions to an expression.

Important: Do not confuse the elements v ∈ Var with variables as they
are used in terms. From the term perspective, the elements of Var are constant
symbols. Hence, Var(let x=1 in x) = ∅!

4.1 Variables, Denotationally

Background reading: Peter D. Mosses, Denotational Semantics, Handbook of
Theoretical Computer Science, Volume B.

The definition of a denotational semantics start with the definition of the
semantic domains. At present, the semantic domains are sets (but this will be
refined later).

The presence of variables requires a new distinction among the semantic
domains.

• The values that can be bound to variables are denoted values.

• The values that arise as interpretations of expressions are expressed values.

A typical relation between the two kinds of values is that expressions denote
computations that yield denoted values. However, other constellations are pos-
sible.

The domain Env of environments captures the binding of variable names
to denoted values. An environment is a finite (hence partial) function from
variables to (denoted) values. The set Val specifies the denoted values.

Env = Var →֒ Val

Val = Z

The denotation of an expression is a function that maps some environments to
a value:

Comp = Env →֒ Val

14

The semantic equations specify a function that maps an expression to an ex-
pressed value (a computation, in this case). In the equations, ρ ∈ Env.

E : Exp→ Comp

EJvKρ = ρ(v)
EJaKρ = CJaK
EJe1+e2Kρ = EJe1Kρ+ EJe2Kρ
EJlet v = e1 in e2Kρ = EJe2Kρ[v 7→ EJe1Kρ]

where the environment update ρ[v 7→ z] is defined by

ρ[v 7→ z](y) =

{
z v = y
ρ(v) v 6= y

Note:

1. Variable names are interpreted by the identity function (as themselves).

2. Constant expressions ignore the environment.

3. Operators pass the environment to the subterms.

4. The propagation of the environment and its overwriting in the let clause
defines the scope or static extent of a variable binding. The scope of a
variable v starts with the body e2 of let v=e1 in e2 and extends up to
the header expression e′1 of a subterm let v=e′1 in e′2 occuring in e2 such
that no intervening subterm of this form exists. If such a new binding let

v=e′1 in e′2 exists, it shadows the previous binding of the variable v in its
body e′2.

Example: The semantics of let x=17+4 in x+x

EJlet x=17+4 in x+xK{ }
= EJx+xK{x 7→ EJ17+4K{ }}
= EJx+xK{x 7→ EJ17K{ }+ EJ4K{ }}
= EJx+xK{x 7→ 17 + 4}
= EJxK{x 7→ 21}+ EJxK{x 7→ 21}
= 21 + 21
= 42

Exercise: What is the semantics of

1. let x=1 in let x=x+x in let x=x+x in x

2. let x=42 in x+y

Exercise: The scope of a let binding is a set of positions in an Exp term
e. Define a function that, given a position in the abstract syntax tree e and
a variable, determines if that variable is in scope and if so, the position of its
binding let expression. A suggestion for the type of the function is

S : (e : Exp)→ Pos(e)→ Var→ P(Pos(e))

15

A number of properties are provable from such a semantics. For example, if
each variable occurrence in an expression has a corresponding binding position,
then the denotational semantics of the expression is defined. Or: the renaming
a bound variable does not change the denotation of an expression. Or: the
correctness of substitution.

Stating these properties requires a few definitions about variables in expres-
sions.

Definition 14 The set, FV(e), of free variables of an expression is defined by

FV(v) = {v}
FV(a) = ∅
FV(e1+e2) = FV(e1) ∪ FV(e2)
FV(let v = e1 in e2) = FV(e1) ∪ (FV(e2) \ {v})

An expression e is closed if FV(e) = ∅; otherwise it is open.

Lemma 2 If FV(e) ⊆ dom(ρ), then there exists y such that EJeKρ = y.

Proof: By induction on e.

Definition 15 Syntactic substitution of a variable v′ by expression e′ in ex-
pression e, written e[v′ 7→ e′]

v[v′ 7→ e′] =

{
e′ v = v′

v v 6= v′

a[v′ 7→ e′] = a

(e1+e2)[v
′ 7→ e′] = e1[v

′ 7→ e′]+e2[v
′ 7→ e′]

(let v = e1 in e2)[v
′ 7→ e′] = let v′′ = e1[v

′ 7→ e′] in e′2[v 7→ v′′][v′ 7→ e′]
where v′′ 6= v′, v′′ /∈ FV(e′) ∪ FV(e2)

Syntactic substitution and term substitution are held apart by notation, the
former is written e[v 7→ e′] while the latter is {x 7→ t′}(t).

The side conditions on syntactic substitution are required to avoid capturing
of variables, hence it is often called capture avoiding substitution. For example,
in the expression

(let x=2 in y)[y 7→ x]

the y in the in the body of the let refers to a binding of y somewhere in the
context of the expression. Simply replacing y by x would change the binding
structure of the expression (by capturing x) and hence the expression’s meaning.
The correct result of the above substitution is

(let x=2 in y)[y 7→ x] = let x’=2 in x

Similarly, substitution must respect shadowing. As the example shows, a
substitution for the binding variable proceeds in the header of the let but leaves
the let’s body alone:

(let x=x+x in x)[x 7→ 4] = let x’=4+4 in x’

Again, substitution must not destroy the binding structure of the expression.

16

Lemma 3 (Renaming) Suppose that v′ /∈ FV(e2). Then, for all ρ ∈ Env,
EJlet v = e1 in e2Kρ = EJlet v′ = e1 in e2[v 7→ v′]Kρ.

Proof: Induction on e2.

Renaming of bound variables is often called α-renaming or α-conversion.

Lemma 4 (Substitutivity) Suppose that EJeKρ[v 7→ z] = y and EJe′Kρ = z.
Then EJe[v 7→ e′]Kρ = y.

Proof: Induction on e.

4.2 Variables, Big-Step Style

To accommodate variables in a big-step operational semantics, environments
are used as in a denotational semantics. The evaluation relation receives such
an environment as an additional component:

ρ ⊢ e →֒ y

where ρ ∈ Env, e ∈ Exp, and y ∈ Z.
As before, the relation is specified by decomposing the expression.

(const)
ρ ⊢ a →֒ CJaK

(add)
ρ ⊢ e1 →֒ y1 ρ ⊢ e2 →֒ y2

ρ ⊢ e1+e2 →֒ y1 + y2

(var)
ρ(v) = y
ρ ⊢ v →֒ y

(let)
ρ ⊢ e1 →֒ y1 ρ[v 7→ y1] ⊢ e2 →֒ y2

ρ ⊢ let v = e1 in e2 →֒ y2

In this particular case, properties of evaluation can be proved analogously
to the denotational semantics.

Exercise: State and prove the properties Renaming and Substitutivity in the
big-step semantics framework.

Exercise: Model the environment ρ as a list of pairs, i.e., as terms generated
by the signature

empty-env : Env

extend-env : Var × Z× Env→ Env

and redefine the big-step operational semantics using this representation of the
environment. Hint: only rules (var) and (let) change; introduce an auxiliary
judgement for ρ(v) = y.

17

4.3 Variables, Small-Step Style

The small-step semantics does not require environments. Instead, it computes
the value of the header of a let expression and then substitutes it into the body.
This works because the set of values is a subset of the set of expressions, in our
case the set of constants:

Val ∋ y ::= a

The small-step reduction rules are thus

a1+a2 −→ a3 where CJa1K + CJa2K = CJa3K

let v = y in e −→ e[v 7→ y]
(1)

In particular, the let rule is only applicable is the header is already a value.
Terminology: An expression that matches the left-hand side of a rule (where

the rule is applicable at position ε) is a redex. The result of applying the rule
to the redex is the reductum.

In a reduction semantics, these rules could be applied anywhere in an ex-
pression. A more accurate reflection of what happens during evaluation requires
a strategy that specifies which rule to apply at which position in the next step.
One way of defining that strategy is the following:

e1 −→ e′1
e1+e2 −→ e′1+e2

e2 −→ e′2
y1+e2 −→ y1+e

′
2

e1 −→ e′1
let v = e1 in e2 −→ let v = e′1 in e2

(2)

These three rules define the strategy of searching for redexes:

1. In an expression of the form e1+e2, look for redexes in the left subexpres-
sion, e1, first.

2. If an expression has the form y1+e2 (that is, its left subexpression is already
reduced to a value), then look for redexes in the right subexpression, e2.

3. If an expression has the form let v = e1 in e2, then look for redexes in
the header, e1, first.

Taken together, the rules specify a leftmost evaluation strategy.
Example: Reduce let x=17 in let y=x+4 in y+y to a value.
For a big-step semantics description it is fairly easy to see that its evaluation

relation is deterministic. For a small-step semantics, this can be more involved
and requires a proof.

Lemma 5 1. For each expression e there is at most one e′ such that e −→ e′.

18

2. If e is closed then either e is a value or there is exactly one e′ such that
e −→ e′.

3. If e is closed, then there is exactly one a such that e
∗
−→ a.

Proof: Items 1 and 2 are proven by induction on e.
Item 3 is by induction on the proof tree of e

∗
−→ a.

Hence it makes sense to define an evaluation function in terms of small-step
reduction.

Definition 16 The evaluation function eval maps any closed expression to a
value. It is defined by

eval (e) = a iff e
∗
−→ a

An alternative way of specifying the evaluation strategy employs contexts.

Definition 17 Let Σ be a signature and X a set of variables with x ∈ X ,
Σ ∩X = ∅.

A Σ-context C is a pair of a term tC ∈ T (Σ, X) and a position pC ∈ Pos(tC).
The position p is called the hole of C.
The operation hole filling that sticks a term t in a context C is defined by

C[t] = tC [t]pC
.

The empty context (x, ε) is written [].
If n ∈ N, n ≥ 0, f ∈ Σ(n), t1, . . . , tn ∈ T (Σ, X), 1 ≤ i ≤ n, and C =

(tC , pC) a context then f(t1, . . . , C
′, . . . , tn) := (f(t1, . . . , tC , . . . , tn), i.pC) is

also a context.

Intuitively, a context is a term with a hole.
Example: The set of contexts for the abstract syntax of arithmetic expres-

sions with let is generated by the following grammar.

C ::= [] | C+e | e+C | let v = C in e | let v = e in C

The grammar of the above example generates all possible contexts. That is,
the relation e→ e′ defined by e = C[r], r −→ r′ according to equation (1), and
e′ = C[r′] specifies the reduction semantics: a reduction rule may be applied
anywhere in an expression.

Defining an evaluation strategy like the above leftmost evaluation strategy
requires the set of contexts to be suitable restricted. This kind of context is an
evaluation context.

E ::= [] | E+e | y+E | let v = E in e

Exercise: Show that the relation e → e′ defined by e = E[r], r −→ r′

according to ruleset (1), and e′ = E[r′] specifies the leftmost reduction relation
obtained by taking ruleset (1) and (2) together.

19

5 Functions, Conditionals, and Recursion

In this section, the language consists of expressions and recursive function def-
initions. Conditionals are added so that interesting recursive functions may be
defined.

The abstract syntax has three categories, programs p ∈ Prog, function def-
initions d ∈ Def, and expressions e ∈ Exp. For simplicity, functions have just
one parameter.

v ∈ Var

f ∈ Fun

Exp e ::= v | a | e+e | if e then e else e | f(e)
Def d ::= f(v) = e
Prog p ::= d∗ e

The notation d∗ stands for a list of ds. Var and Fun are disjoint, unspecified sets
of variable and function symbols. Expressions are extended with a conditional
and with a function call.

Both styles of operational semantics extend smoothly to this extended lan-
guage. However, the denotational semantics requires some extra effort.

5.1 Functions and Conditionals, Big-Step Style

For modeling recursive functions, the big-step evaluation relation takes the list
of function definitions as an extra component:

d∗, ρ ⊢ e →֒ y

where d∗ ∈ Def∗, ρ ∈ Env = Var →֒ Z, e ∈ Exp, and y ∈ Z.
As before, the evaluation relation is defined by decomposition of the expres-

sion. However, due to the presence of function calls, the evaluation trees (proof
trees) no longer correspond directly to the structure of an expression.

(const)
d∗, ρ ⊢ a →֒ CJaK

(var)
ρ(v) = y

d∗, ρ ⊢ v →֒ y

(add)
d∗, ρ ⊢ e1 →֒ y1 d∗, ρ ⊢ e2 →֒ y2

d∗, ρ ⊢ e1+e2 →֒ y1 + y2

(iftrue)
d∗, ρ ⊢ e1 →֒ y y 6= 0 d∗, ρ ⊢ e2 →֒ y2

d∗, ρ ⊢ if e1 then e2 else e3 →֒ y2

(iffalse)
d∗, ρ ⊢ e1 →֒ 0 d∗, ρ ⊢ e3 →֒ y3
d∗, ρ ⊢ if e1 then e2 else e3 →֒ y3

(funcall)
d∗, ρ ⊢ e →֒ y f(v) = e′ ∈ d∗ d∗, [v 7→ y] ⊢ e′ →֒ y′

d∗, ρ ⊢ f(e) →֒ y′

20

1. There are two rules for conditionals, one for the case where the condition
evaluates to a non-zero value and one for condition zero. Each rule selects
the appropriate branch of the conditional and ignores the other.

2. The rule for a function call first evaluates the argument of the function.
Next, it binds the variable to the argument value [v 7→ y], extracts the
right-hand side of f ’s function definition (the body of f) from the list
of function definitions, and starts evaluating that body. The value of
the function call is the value of the function’s body in the environment
specified by the parameter’s value.

Example: Build the evaluation tree for

fac (n) = if n=0 then 1 else n*fac (n-1)

fac (2)

Due to the presence of (recursive) function calls, the evaluation of an expres-
sion may not terminate. The big-step operational semantics only yields a result
for terminating evaluations. Intuitively, a non-terminating evaluation builds an
infinite evaluation tree that continues forever to develop new branches.

For this reason, conditionals require special treatment with the two eval-
uation rules above. In particular, a conditional cannot simply be considered
as a ternary function because one branch may contain a non-terminating func-
tion call (consider evaluation of fac (0) which requires evaluation of if n=0

then 1 else n*fac (n-1) for [n 7→ 0]; calling fac with argument −1 does not
terminate).

Exercise: Show that fac (n) terminates for n ∈ N.

5.2 Functions and Conditionals, Small-Step Style

For the small-step semantics, new reduction rules need to be added for eval-
uating p = d∗ e. There are two reduction rules for the conditional and one
reduction rule for each function definition in the program.

if 0 then e2 else e3 −→ e3

if a then e2 else e3 −→ e2 a 6= 0

f(y) −→ e[v 7→ y] f(v) = e ∈ d∗

The conditional reductions require that the condition is already evaluated. The
function call reductions require that the argument expression is evaluated before
calling the function.

The remainder of the evaluation strategy is defined by evaluation contexts.

E ::= [] | E+e | y+E | if E then e else e | f(E)

That is, beyond the leftmost evaluation of the addition, (only) the condition
of a conditional is evaluated (to proceed further, one of the reduction rules

21

for conditionals must be applied) and the argument of a function call must be
evaluated before invoking the function.

The set of values does not change.

Val ∋ y ::= a

As before, the small-step evaluation relation → is defined by e → e′ if e =
E[r], r −→ r′ (r is a redex), and e′ = E[r′]. By similar reasoning as before, the
following result can be established.

Lemma 6 Let e ∈ Exp an expression. Exactly one of the following cases is
true.

1. e ∈ Val is a value,

2. e has the form E[v], for some evaluation context E and variable v,

3. e has the form E[r] where r is a redex.

Furthermore, the choice of an evaluation context is deterministic.

Lemma 7 Let w,w′ range over variables v and redexes r.
If e = E[w] and e = E′[w′], then E = E′ and w = w′.

And hence, evaluation of a closed expression always yields a unique value in
the end.

Lemma 8 Let e ∈ Exp be a closed expression.
Then there exists exactly one a ∈ Val such that e

∗
→ a.

5.3 A Denotational Attempt

A denotational semantics for a language with recursive functions and condition-
als requires a fundamental change in the choice of the underlying domains. A
concrete example will provide the intuition.

5.3.1 Recursion

Question: Given the definition

fac (n) = if n=0 then 1 else n*fac (n-1)

what is the meaning of fac in a function call like fac (2)? (Recall that, in
a denotational semantics, the meaning of EJfac (2)K = A(EJfacK) (EJ2K) is a
function of the meanings of the direct subexpressions.)

Since the value of n is drawn from Z, fac must be interpreted by some func-
tion. From the big-step semantics, we know that fac (-1) does not terminate,
so that a partial function g : Z →֒ Z seems appropriate for the meaning of fac.

22

How can we define this function? We partition Z = A0 ∪A1 ∪ · · · ∪A∞ such
that

Aj = {y ∈ Z | y − j = 0, (∀0 ≤ i < j) y − i 6= 0} (3)

A∞ = {y ∈ Z | (∀i ∈ N) y − i 6= 0} (4)

With this definition

• Aj is the set of arguments such that the condition n=0 becomes true in
the j + 1st recursive call to fac and

• A∞ is the set of arguments such that the condition n=0 never becomes
true.

Hence g can be defined by case distinction as

g(y) =

{
Πj−1

i=0 (y − i) if y ∈ Aj

undefined if y ∈ A∞

Since Aj = {j} and A∞ = {y ∈ Z | y < 0} this means that

g(y) =

{
Πy

i=1i = y! if y ≥ 0
undefined if y < 0

Unfortunately, this is an ad-hoc computation which needs to be redone for
each particular recursive function definition. Hence, we look for a more general
way of defining the function g from a recursive function definition like fac. To
do so, we consider the recursive definition as a functional equation and g as a
particular solution of that equation:

For all y ∈ Z it holds that

g(y) =

{
1 if y = 0
y · g(y − 1) if y 6= 0

(5)

Proof: by case analysis over y ∈ Aj and y ∈ A∞.
Unfortunately, such functional equations have more than one solution, in

general. In particular, equation (5) has infinitely many solutions: For x ∈ Z
define gx by

gx(y) =

{
y! if y ≥ 0
x if y < 0

It is easy to check that (∀x ∈ Z) gx solves equation (5)!
However, considering the operational intuition, none of the solutions gx make

sense because each of them invents a value whereas g makes the least possible
assumptions.

Hence, what we are looking for is a partial function that solves the functional
equation but which is “as undefined as possible”. That is, a sensible meaning
for a recursive equation is the least partial function (with respect to inclusion
of function graphs) that solves the equation.

23

5.3.2 Strictness

As another example for a program with recursively defined functions consider

g (n) = 3

h (n) = h (n)

What is the value of g (h (1))?
The above reasoning tells us that the meaning of h is the least function h

such that (∀y ∈ Z) h(y) = h(y). Clearly, all partial functions solve this equation.
But the smallest of them is ∅, the function with the empty graph (its domain
and range are empty).

Similarly, the meaning of g is a function g such that (∀y ∈ Z) g(y) = 3 so
that g must be the constant function that always returns 3.

Coming back to the value of g (h (1)), we find that h (1) is undefined so
that g is never consider and the value of the whole expression is undefined.

This way of reasoning corresponds to call-by-value parameter passing: first,
we need to compute the value of h (1) and only if that value is defined, then
we can pass it to g for further computation.

Alternatively, parameters could be passed using call-by-name parameter pass-
ing. Under that regime, a parameter is only evaluated if its value is needed to
compute the result. Since g above is a constant function, its call-by-name eval-
uation never needs to look at its argument, so that g (h (1)) would yield 3 in
the end.

However, it is not possible to model this behavior of g using partial functions!
What would be the graph of a function g that returns a value even if its argument
is undefined (i.e., not present)?

NB. Similar problems arise if we want to define the meaning of a conditional
by a function:

f (n) = if 0 then h (n) else 1

h (n) = h (n)

Clearly, f denotes a constant function (even with call-by-value parameter pass-
ing) but the meaning of f’s right-hand side must be a function that maps the
undefined value of h (n) to 1.

Functions that require their arguments to be present (evaluated) are strict,
otherwise they are non-strict.

These problems indicate that sets and set-theoretic functions are not ad-
equate for defining denotational semantics for recursive functions and condi-
tionals. Hence, we set out to find a suitable foundation for expression such
semantics. There are two main requirements for this foundation

1. recursive functional equations need to have a least solution

2. non-strict functions should be expressible.

24

6 Complete Partial Orders and Fixpoints

Domains which are suitable for denotational semantics are constructed from
certain partial orderings. The special feature that makes it possible to determine
the least solution of a functional equation in the set of partial functions is the
fact that such functions can be ordered by definedness (graph inclusion).

Background reading:

• Carl A. Gunter and Dana S. Scott, Semantic Domains, Handbook of The-
oretical Computer Science, Volume B.

• Rudolf Berghammer, Semantik von Programmiersprachen, Logos Verlag,
Berlin, 2001. (Kapitel 2)

• Peter Thiemann, Grundlagen der funktionalen Programmierung, Teubner
Verlag, 1994. (Kapitel 10)

6.1 Complete Partial Orderings, Continuous Functions,

Fixpoints

Definition 18 (A,⊑) is a partially ordered set (poset) if A 6= ∅ is a set and
⊑ ⊆ A×A is a reflexive, transitive, and antisymmetric relation.

Hence,

reflexive (∀a ∈ A) a ⊑ a
transitive (∀a, b, c ∈ A) a ⊑ b ∧ b ⊑ c⇒ a ⊑ c
antisymmetric (∀a, b ∈ A) a ⊑ b ∧ b ⊑ a⇒ a = b

Examples:

1. For each set M , (M,=) is the discrete poset.

2. (N,≤) is a poset.

3. For each set M , (P(M),⊆) is a poset.

4. For each pair of sets M,N , the set of partial functions

M →֒ N ⊆ P(M ×N)

is a poset where f ⊑ g iff

(∀(a, b) ∈M ×N) (a, b) ∈ f ⇒ (a, b) ∈ g

Definition 19 Let (A,⊑) be a poset, X ⊆ A, and a ∈ A.

• a is an upper bound of X if (∀x ∈ X) x ⊑ a.

• a is a least element of X if a ∈ X and (∀x ∈ X) a ⊑ x.

25

• If the set {x ∈ A | x is upper bound of X} has a least element, then
a =

⊔
X is the least upper bound of X or the supremum of X .

Notation: the supremum of {a, b} (if exists) is written a ⊔ b.
There are dual definitions for lower bound, greatest element, and infimum

denoted by the symbol ⊓.

Lemma 9 A poset (A,⊑) has at most one least (greatest) element.

Proof: Suppose that a and b are both least elements of A. Since a is least, it
must be a ⊑ b, and since b is also least, it must be b ⊑ a. Taken together with
antisymmetry, it follows that a = b.

Examples:

• The discrete poset (M,=) has neither least nor greatest elements if |M | ≥
2.

• (Z,≤) is a poset without least (greatest) element.

• (P(M),⊆) has least element ∅ and greatest element M .

• M →֒ N is a poset with least element ∅ (the empty function), but no
greatest element.

Definition 20 Let (A,⊑) be a poset.
A chain is a subset X ⊂ A such that for all x, y ∈ X it holds that x ⊑ y or

y ⊑ x.

Examples:

• The empty set and each singleton set are chains in any poset.

• Any subset X ⊆ Z is a chain in (Z,≤).

• Consider the poset ({1, 2, 3},⊆).

The set X1 = {∅, {1}, {1, 2}, {1, 2, 3}} is a chain.

The set X2 = {∅, {1}, {1, 2}, {1, 3}} is not a chain because neither {1, 2} ⊆
{1, 3} nor {1, 3} ⊆ {1, 2}.

• Consider the poset {Z →֒ Z,⊆}.

The set {f, g} with f(x) = x and g(x) = 2x is not a chain.

The set {gi | i ∈ N} is a chain if

gi(y) =

{
y! if 0 ≤ y < i
undefined otherwise

Definition 21 A chain-complete partial ordering (CCPO) is a poset (A,⊑)
such that

26

1. A has a least element ⊥ (bottom) and

2. Each chain X ⊆ A has a supremum
⊔
X ∈ A.

Examples:

• The discrete poset (A,=) is not a CCPO if |A| > 1 (because it does not
have a least element).

• (N,≤) is not a CCPO. It has a least element but the chain N does not
have a supremum in N.

• For any set M , the poset (P(M),⊆) is a CCPO. The least element is ∅
and for any subset X ⊆ P(M) it holds that

⊔
X =

⋃
X ∈ P(M), hence

it also holds for arbitrary chains.

• M →֒ N is a CCPO with least element ∅. The proof that every chain in
M →֒ N has a supremum in M →֒ N is left as an exercise.

Definition 22 A poset (A,⊑) is a flat ordering if it has a least element ⊥ ∈ A
such that, for all x, y ∈ A,

x ⊑ y iff x = ⊥ ∨ x = y

Lemma 10 Every flat ordering is a CCPO.

Example: Consider N⊥ = (N∪{⊥},⊑) where ⊑ is the flat ordering relation.

Definition 23 Let (A,⊑A) and (B,⊑B) be CCPOs. A function f ∈ A→ B is

1. monotone if, for all x, y ∈ A, x ⊑A y implies f(x) ⊑B f(y),

2. continuous if f is monotone and, for all chains X ⊆ A, f(
⊔

A X) =⊔
B f(X),

3. strict if f(⊥A) = ⊥B.

Examples: Define the successor function succ⊥ : N⊥ → N⊥ by

succ⊥(x) =

{
⊥ x = ⊥
x+ 1 x 6= ⊥

This function is

1. monotone: suppose that x ⊑ y. By definition of ⊑, x = ⊥ ∨ x = y. If
x = ⊥, then succ⊥(x) = succ⊥(⊥) = ⊥ ⊑ succ⊥(y). If x = y, then also
succ⊥(x) = succ⊥(y). Taken together, it follows that f(x) ⊑ f(y).

2. continuous: we already know that succ⊥ is monotone. If X is a chain in
N⊥, then either X = {x} or X = {⊥, y} with y 6= ⊥. In either case,
succ⊥(

⊔
X) =

⊔
succ⊥(X) is immediate.

27

3. strict: immediate by definition.

A more interesting function is the conditional ite : N⊥ ×N⊥ ×N⊥ → N⊥

defined by

ite(b, t, e) =

⊥ b = ⊥
t b 6= ⊥ ∧ b > 0
e b 6= ⊥ ∧ b = 0

Exercise: ite is monotone and continuous in each argument and strict in the
first argument.

Recall the definition of function composition (f ◦ g)(x) = (f(g(x))).

Lemma 11 Let (A,⊑A), (B,⊑B), and (C,⊑C) be CCPOs and f ∈ A → B,
g ∈ B → C.

1. If (B,⊑B) is a flat ordering and f monotone, then f is either strict or
constant.

2. If (A,⊑A) is a flat ordering and f strict, then f is monotone.

3. If every chain in (A,⊑A) is finite and f is monotone, then f is continuous.

4. If f and g are both monotone (continuous, strict), then their composition
g ◦ f ∈ A→ C is monotone (continuous, strict).

5. If f is monotone and X ⊆ A is a chain, then
⊔

B f(X) ⊑B f(
⊔

A X).

In the previous section, we found that the factorial function n 7→ n! is a
solution of the equation

g(y) =

{
1 if y = 0
y · g(y − 1) if y 6= 0

(6)

This fact can be reinterpreted by considering the equation as defining a function
τ that constructs a new function from any given g : Z →֒ Z.

τ(g)(y) =

{
1 if y = 0
y · g(y − 1) if y 6= 0

(7)

So τ : (Z →֒ Z)→ (Z →֒ Z).
This new point of view has two remarkable consequences.

1. τ ’s definition is not recursive.

2. The factorial function is a fixpoint of τ :

Let f : Z →֒ Z defined by f(n) = n! if n ≥ 0 and undefined otherwise.
Then

τ(f)(y) =

{
1 if y = 0
y · f(y − 1) if y 6= 0

=

1 if y = 0
y · (y − 1)! if y − 1 ≥ 0
undefined if y < 0

=

{
y! if y ≥ 0
undefined if y < 0

Hence f is a fixpoint of τ .

28

So, instead of finding the least solution of a functional equation, it is sufficient
to find the least fixpoint of a function like τ (like solutions, fixpoints are not
unique). It turns out that CCPOs are the right framework for constructing
functions that have such (least) fixpoints.

Definition 24 Let (A,⊑) be a CCPO and f : A→ A a function.
x ∈ A is a fixpoint of f if f(x) = x.
If the set {x | x fixpoint of f} has a least element x0, then x0 is the least

fixpoint of f .

Notation: µf or fix f denote the least fixpoint of f .

Lemma 12 Let (A,⊑) be a CCPO and f : A→ A monotone.
If x0 is a fixpoint of f , then

⊔
i∈N

f (i)(⊥) ⊑ x0.

Proof: Two things need to be established:

1. X = {f (i)(⊥) | i ∈ N} is a chain.

2. (∀i ∈ N) f (i)(⊥) ⊑ x0, i.e., x0 is an upper bound.

The chain {f (i)(⊥) | i ∈ N} is often called fixpoint iteration for f . It
always yields a lower approximation to the fixpoints of f . If additionally f is
continuous, then the supremum of the fixpoint iteration is the least fixpoint.
This is stated in the Knaster-Tarski-Kleene fixpoint theorem.

Theorem 2 Let (A,⊑) be a CCPO and f : A→ A continuous.
Then µf exists and µf =

⊔
i∈N

f (i)(⊥).

Proof: From Lemma 12, we know that x0 =
⊔

i∈N
f (i)(⊥) ⊑ µf (if the latter

exists). It remains to show that x0 is a fixpoint.

Example: To apply the fixpoint theorem to the factorial function, we need
to establish that the function τ is indeed continuous.

τ is monotone: Let g ⊑ h be functions in Z →֒ Z. If (y, z) ∈ τ(g), then there
are two cases (by definition of τ).

• y = 0 and z = 1. Clearly, (y, z) = (0, 1) ∈ τ(h).

• y 6= 0 and (∃z′ ∈ Z) (y− 1, z′) ∈ g and z = y · z′. Since g ⊑ h is assumed,
(y − 1, z′) ∈ h and hence (y, y · z′) ∈ τ(h), too.

In each case, (y, z) ∈ τ(h) so that τ is monotone.
τ is continuous: Let G be a chain in Z →֒ Z with supremum g =

⊔
G. Show

that τ(G) has supremum τ(g).⊔
τ(G) ⊑ τ(g) because of Lemma 11.5.

It remains to see that τ(g) ⊑
⊔
τ(G). Suppose that (y, z) ∈ τ(g). There are

two cases (by definition of τ).

29

• y = 0 and z = 1. Since (0, 1) ∈ τ(g′) for all g′ ∈ G, it must be that
(0, 1) ∈

⊔
τ(G).

• y 6= 0 and (∃z′ ∈ Z) (y−1, z′) ∈ g and z = y·z′. Since g =
⊔
G, there must

be some g′ ∈ G with (y − 1, z′) ∈ g′. Hence, (y, y · z′) ∈ τ(g′) ⊆
⊔
τ(G).

In each case, (y, z) ∈
⊔
τ(G).

Hence, the Knaster-Tarski-Kleene theorem is applicable to τ and its least
fixpoint can be determined from the fixpoint iteration. The starting point, ⊥,
is the empty function ∅ ∈ Z →֒ Z.

τ (0)(∅)(y) = undefined

τ (1)(∅)(y) =

{
1 if y = 0

y · τ (0)(∅)(y − 1) if y 6= 0
=

{
1 if y = 0
undefined if y 6= 0

τ (2)(∅)(y) =

{
1 if y = 0

y · τ (1)(∅)(y − 1) if y 6= 0
=

1 if y = 0
1 if y = 1
undefined if y < 0 ∨ y > 1

τ (3)(∅)(y) =

{
1 if y = 0

y · τ (2)(∅)(y − 1) if y 6= 0
=

1 if y = 0
1 if y = 1
2 if y = 2
undefined if y < 0 ∨ y > 2

τ (4)(∅)(y) =

{
1 if y = 0
y · τ (3)(∅)(y − 1) if y 6= 0

=

1 if y = 0
1 if y = 1
2 if y = 2
6 if y = 3
undefined if y < 0 ∨ y > 3

...

By induction on i we can show that

τ (i)(∅)(y) =

{
y! if 0 ≤ y < i
undefined if y < 0 ∨ y ≥ i

and from that we obtain that the supremum is the factorial function:

(
⊔

i∈N

τ (i)(∅))(y) =

{
y! if 0 ≤ y
undefined if y < 0

6.2 Admissible Predicates

Having fixed the semantics of recursive definitions as the least fixpoint of an
associated function, the next question is how to establish properties of such a
recursive function. The obvious idea would be to express properties as predi-
cates and define the validity of predicates by fixpoint iteration, too. Unfortu-
nately, this approach fails because some interesting predicates do not behave
continuously. For example, the predicate

P (g) = (∃x ∈ N) g(x) = ⊥

30

is true for all iterates τ (i)(⊥) in the previous example, that is, for all elements of
the chain {τ (i)(⊥) | i ∈ N}. However, the predicate is false for the least fixpoint
of τ , since

⊔
i∈N

τ (i)(∅) is defined for all x ∈ N.
Let B be the flat partial order with elements {true, false,⊥}.

Definition 25 Let (A,⊑) be a CCPO and P : A→ B a predicate.
P is admissible if, for each chain X ⊆ A,

(∀x ∈ X) P (x)⇒ P (
⊔

X)

Clearly, an admissible predicate on A is a continuous function A→ B.
Admissible predicates can be proven using the fixpoint induction principle:

Theorem 3 Let (A,⊑) be a CCPO, f ∈ A → A continuous, and P : A → B
an admissible predicate. Then

P (⊥) = true (∀x ∈ A) P (x) = true⇒ P (f(x)) = true
P (fix f) = true

Proof: Let X = {f (i)(⊥) | i ∈ N}. Since f is monotone, X is a chain.
Assuming the premises of the inference rule, an induction on i ∈ N yields

that P (x) = true, for all x ∈ X . Since P is admissible, it holds that P (
⊔
X) =

true, too, and the fixpoint theorem yields that
⊔
X = fix f . Hence, the conse-

quence of the rule.

The following two lemmas provide important tools to build admissible pred-
icates.

Lemma 13 A predicate P : A → B is admissible if there is a CCPO (B,⊑)
and continuous functions f, g : A→ B such that

(∀x ∈ A) P (x) = true ⇔ f(x) ⊑ g(x)

Lemma 14 Let P,Q : A→ B be admissible predicates.
Then (P ∧Q) : A→ B is also admissible with

(P ∧Q)(x) =

{
⊥ P (x) = ⊥ or Q(x) = ⊥
P (x) ∧Q(x) P (x) 6= ⊥ and Q(x) 6= ⊥

Exercise: Show that, for continuous functions f, g : A → B, the predicate
P (x) = (f(x) = g(x)) is admissble.

Lemma 15 Let (A,⊑) be a CCPO, x0 ∈ A, and f : A → A continuous. If
f(x0) ⊑ x0, then fix f ⊑ x0.

Proof: Establish that P (x) = x ⊑ x0 is admissble and apply fixpoint induction.

31

6.3 Domain Constructions

To construct denotational semantics, requires an arsenal of CCPOs analogous to
the well-known constructions on sets (product, sum, functions). This subsection
establishes the corresponding constructions on CCPOs.

Starting with this section, if A is a poset, then its carrier set is |A| and its
ordering is ⊑A with the subscript omitted if it is clear from the context.

Definition 26 Let A and B be posets.
Define the cartesian product A×B by |A×B| = |A| × |B| and

(x1, y1) ⊑ (x2, y2) ⇔ x1 ⊑A x2 ∧ y1 ⊑B y2

Lemma 16 1. If A,B are CCPOs, then so is A×B.

2. The projection functions π1 : A × B → A and π2 : A × B → B are
continuous.

This product is sometimes too general because it allows its components to be
⊥ independently. In many programming languages, the components of a pair
cannot exist independently. If the computation of one component fails, then
the pair (record, object) is not constructed. This intuition is reflected in the
following variant of the product, the smash product.

Definition 27 Let A and B be posets with least element.
Define the smash product A⊗B by

|A⊗B| = ((|A| \ {⊥A})× (|B| \ {⊥B})) ∪ {⊥}

and the ordering by

x ⊑ y ⇔ x = ⊥ ∨ x = (x1, x2) ∧ y = (y1, y2) ∧ x1 ⊑A y1 ∧ x2 ⊑B y2

Define further smash : A×B → A⊗B by

smash (x, y) =

{
⊥ x = ⊥ ∨ y = ⊥
(x, y) x 6= ⊥ ∧ y 6= ⊥

Lemma 17 1. If A,B are CCPOs, then A⊗B is a CCPO.

2. The projection functions π⊗
1 : A ⊗ B → A and π⊗

2 : A ⊗ B → B are
continuous (with π⊗

i (⊥) = ⊥).

3. The construction function smash : A×B → A⊗B is continuous.

Similar to the product construction, there are two variants for constructing
sums.

32

Definition 28 Let A and B be posets.
The separated sum A+B is defined by

|A+B| = {(x, 0) | x ∈ A} ∪ {(y, 1) | y ∈ B} ∪ {⊥}

with ordering

x ⊑ y ⇔ x = ⊥
∨ x = (x1, 0) ∧ y = (y1, 0) ∧ x1 ⊑A y1
∨ x = (x2, 1) ∧ y = (y2, 1) ∧ x2 ⊑B y2

Lemma 18 1. If A,B are CCPOs, then A+B is a CCPO.

2. The injection functions Inl : A → A + B and Inr : B → A + B defined
by Inl (x) = (x, 0) and Inr (y) = (y, 1) are continuous.

3. The elimination function case : A+B×(A→ C)×(B → C)→ C defined
by

case ((x, 0), f, g) = f(x)

case ((y, 1), f, g) = g(y)

case (⊥, f, g) = ⊥

is continuous.

Definition 29 Let A and B be posets with least element.
The coalesced sum A⊕B is defined by

|A⊕B| = {(x, 0) | x ∈ A \ {⊥A}} ∪ {(y, 1) | y ∈ B \ {⊥B}} ∪ {⊥}

with ordering

x ⊑ y ⇔ x = ⊥
∨ x = (x1, 0) ∧ y = (y1, 0) ∧ x1 ⊑A y1
∨ x = (x2, 1) ∧ y = (y2, 1) ∧ x2 ⊑B y2

Lemma 19 1. If A,B are CCPOs, then A⊕B is a CCPO.

2. The injection functions Inl⊕ : A→ A⊕B and Inr⊕ : B → A⊕B defined
by Inl⊕(x) = ⊥ if x = ⊥A and (x, 0), otherwise, and Inr⊕(y) = ⊥ if
y = ⊥B and (y, 1), otherwise, are continuous.

3. The elimination function case⊕ : A ⊕ B × (A → C) × (B → C) → C
defined by

case⊕((x, 0), f, g) = f(x)

case⊕((y, 1), f, g) = g(y)

case⊕(⊥, f, g) = ⊥

is continuous.

33

Definition 30 Let A be a set and B be a poset.
Define [A→ B] by

|[A→ B]| = |B||A|

with the pointwise ordering

f ⊑ g ⇔ (∀x ∈ A) f(x) ⊑B g(x)

Lemma 20 1. If A is a set and B a CCPO, then [A→ B] is a CCPO.

2. If A is also CCPO, then eval : [A→ B]×A→ B defined by eval (f, x) =
f(x) is continuous.

Definition 31 Let A be a poset.
Define A⊥ by |A⊥| = {(x, 0) | x ∈ |A|} ∪ {⊥} with ordering

x ⊑ y ⇔ x = ⊥ ∨ x = (x1, 0) ∧ y = (y1, 0) ∧ x1 ⊑A y1

Lemma 21 1. If M is a discrete poset, then M⊥ is a CCPO.

2. If A is a CCPO, then A⊥ is a CCPO.

3. The functions up : A → A⊥ and down : A⊥ → A defined by up (x) =
(x, 0) and down (x, 0) = x and down (⊥) = ⊥ are continuous.

34

7 Functions and Recursion, continued

Now that the fundamentals of domain theory are explained, a denotational
semantics for the language with functions can be defined. Furthermore, we
will consider variations on evaluation strategy (call-by-value vs. call-by-name),
nesting of function definitions, and static vs. dynamic scope.

7.1 Functions and Recursion, Denotationally

Instead of sticking with sets and using the CCPO Z →֒ Z directly, we’ll commit
to CCPOs entirely.

Exercise: for all sets M and N , there is a continuous embedding from M →֒
N into [M⊥ → N⊥].

For brevity, we write A → B instead of [A → B] and assume that →
associates to the right. That is, A→ B → C stands for [A→ [B → C]].

The semantic domains are the following CCPOs.

Val = Z⊥

Env = Var→ Val

FVal = Val→ Val

FEnv = Fun→ FVal

The expressed values are still taken from Val. However, there are two kinds of
denoted values. The elements of Val can be bound to variables, whereas the
elements of FVal can be bound to function symbols.

Hence, the semantic equations for expressions are parameterized with two
kinds of environments, the value environment Env and the function environ-
ment FEnv, and the semantic equation for programs needs to build a function
environment.

E : Exp→ FEnv→ Env→ Val

P : Prog→ Val

In the equations, ρ ∈ Env and ϕ ∈ FEnv.

EJvKϕρ = ρ(v)
EJif e1 then e2 else e3Kϕρ = ite(EJe1Kϕρ, EJe2Kϕρ, EJe3Kϕρ)
EJf(e)Kϕρ = ϕ(f)(EJeKϕρ)

PJ
(
fi(vi) = ei

)n

i=1
e0K = EJe0K(fix g)⊥

where g(ϕ)(fi)(y) = EJeiKϕ{vi 7→ y}

The remaining equations for constants and primitives (addition) carry over mu-
tatis mutandis.

35

Question: Does this definition really match our intentions? That is, is PJpK
really the value of p obtained by a call-by-value evaluation of p (according to
the previously stated big-step or small-step semantics)?

Let’s check with the previous example

f (x) = 1

h (x) = h (x)

f (h (0))

This program does not terminate according to the operational semantics speci-
fied above.

The function g from the definition of P is defined by

g(ϕ)(f)(y) = 1
g(ϕ)(h)(y) = ϕ(h)(y)

Fixpoint iteration yields that ϕ0 = fix g is defined by

ϕ0(f)(y) = 1
ϕ0(h)(y) = ⊥

Hence, the body of the program yields

EJf(h(0))Kϕ0⊥
= ϕ0(f)(EJh(0)Kϕ0⊥)
= ϕ0(f)(ϕ0(h)(EJ0Kϕ0⊥))
= ϕ0(f)(ϕ0(h)(0))
= ϕ0(f)(⊥)
= 1

Oops, we have accidentally specified call-by-name evaluation!
To obtain call-by-value evaluation, we change the definition of g in the se-

mantic equation for programs by insisting that all arguments to a function must
be evaluated, i.e., they must be 6= ⊥.

PvJ
(
fi(vi) = ei

)n

i=1
e0K = EJe0K(fix g′)⊥

where g′(ϕ)(fi)(y) =

{
⊥ y = ⊥
EJeiKϕ{vi 7→ y} y 6= ⊥

With this setting, ϕ′
0 = fix g′ is defined by

ϕ0(f)(y) =

{
⊥ y = ⊥
1 y 6= ⊥

ϕ0(h)(y) = ⊥

so that
EJf(h(0))Kϕ0⊥ = ⊥

as expected.

36

In short, to obtain a call-by-value semantics, all functions must be strict and
variables in the environment must not be bound to the value ⊥.

The following connection may be established between the call-by-value and
the call-by-name semantics.

Lemma 22 For all programs p, PvJpK ⊑ PJpK.

That is, whenever call-by-value evaluation computes a value (6= ⊥), this value
is correct with respect to call-by-name evaluation. It can also be shown that
call-by-name evaluation yields a value whenever any evaluation strategy would
yield a value.

7.2 More on Call-by-name

Of course, the call-by-name evaluation strategy can also be imposed in an oper-
ational semantics. One simplification is that CCPOs are not required for an
operational semantics, sets are entirely sufficient.

7.2.1 Small-Step

In the small-step semantics, we need to revise the reduction rules for function
calls and the evaluation contexts, slightly. The reduction rule for function calls
no longer requires that its parameter expression be reduced to a value.

f(e′) −→ e[v 7→ e′] f(v) = e ∈ d∗

Correspondingly, the evaluation contexts do not descend into the parameter
position, anymore.

En ::= [] | En+e | y+En | if En then e else e

The set of values remains unchanged. Also, the remaining definitions and state-
ments carry over without change.

7.2.2 Big-Step

The big-step semantics turns out to be more tricky to adjust. It forces the
evaluation of function arguments by having an environment ρ ∈ Var →֒ Z.
Now that we want to bind unevaluated expressions to variables, the semantics
needs to transport the information required to perform the evaluation to the
place where the variable is used. That is, the environment for a call-by-name
evaluation must map a variable name to a pair (ρ, e) of an environment and an
expression! Such a pair is called a closure or a suspension.

Envn ∋ ρ ::= ∅ | (v, (ρ, e))ρ

37

The revised evaluation judgement has type Envn × Exp×Z and its rules for
variables and function calls are

ρ(v) = (ρ′, e′) d∗, ρ′ ⊢ e′ →֒ y
d∗, ρ ⊢ v →֒ y

d∗, (v, (ρ′, e′))∅ ⊢ e →֒ y f(v) = e ∈ d∗

d∗, ρ′ ⊢ f(e′) →֒ y

7.2.3 Call-By-Need

The call-by-need evaluation strategy is an optimization of call-by-name evalua-
tion.

strategy function arguments are evaluated . . .

call-by-value exactly once
call-by-name zero-arbitrary often

(each use of an argument is reevaluated)
call-by-need at most once

(result of first evaluation is cached)

Hence, call-by-value may perform unnecessary work and call-by-name may redo
work arbitray often. Both can lead to inefficiency. Call-By-Need can avoid
unnecessary work and repetition of work.

Denotationally, call-by-need behaves exactly like call-by-name.
Operationally, the big-step semantics for call-by-name is not hard to modify

to model call-by-need evaluation. However, a small-step semantics for call-
by-need is non-trivial to construct. See Ariola, Felleisen, Maraist, Odersky, and
Wadler, A Call-By-Need Lambda Calculus, 25th ACM Symposium on Principles
of Programming Languages, San Francisco, USA, 1995.

7.3 Nested Scopes

Many languages allow for nested function definitions (e.g., Pascal, Modula-2,
JavaScript, ML, Scheme) or similar constructs (e.g., nested classes in Java).
The idea is that the nested functions are locally available only inside the body
of the defining function.

Since each nested function binds its own formal parameters, confusing effects
can be achieved due to shadowing of surrounding variable bindings.

For example, the following is a legal JavaScript program.

function f (x,y) {

function h (x) {

return x+y;

}

function g (y) {

return h (x+y);

}

38

return g (5);

}

The syntactic combination of a list of definitions and a function body is
traditionally called a block (this name is due to Algol68). Hence, a suitable
abstract syntax would be

e ::= · · · | f(e)
d ::= f(v) = b
b ::= d∗ e

The corresponding big-step semantics defines two judgements

1. d∗, ρ ⊢ b →֒ y

2. d∗, ρ ⊢ e →֒ y

The expression judgement is defined as before. The interesting part is the
rule for evaluating a block.

d∗2; d
∗
1, ρ ⊢ e →֒ y

d∗1, ρ ⊢ (d∗2 e) →֒ y

This rule relies on the convention that the condition f(v) = b ∈ d∗ obtains the
leftmost definition for f in d∗. Alternatively, d could be represented by a defini-
tion environment, i.e., a function from function symbols to function definitions,
and then the block rule would overwrite the previous function definitions.

Building a small-step semantics requires to α-rename all function symbols to
make them globally unique and then lift all definitions to the toplevel by adding
free variables as parameters. We omit the tedious construction. It is a special
case of the lambda lifting transformation, known from the implementation of
functional programming languages.

For a denotational semantics, the main step is to define the semantics of
a block. In comparison to the language without nested functions, each block
requires the construction of a fixpoint environment.

BJ
(
fi(vi) = ei

)n

i=1
eKϕρ = EJeK(ϕ[fi 7→ ⊥|ni=1] ⊔ fix g)ρ

where g(ϕ′)(fj)(y) = EJejK(ϕ[fi 7→ ⊥|ni=1] ⊔ ϕ′){vj 7→ y}

As before, this defines a call-by-name semantics. To obtain a call-by-value
version, the argument of fj must be tested against ⊥ before entering the body
of the function.

7.4 Static Scope vs. Dynamic Scope

Once nested function definitions are present in a language, there is a further
choice of interpreting variable binding. The standard choice is that variable
occurrences always refer to their next, lexically enclosing definition. That is,
given the definition

39

function f (x) {

function g (y) {

return x;

}

function h (x) {

return g (x);

}

return h (10);

}

the function call f (0) yields 0. This is because the x in the definition of g

refers to the next lexically enclosing binding of x as a formal parametere of f.
This way of resolving a binding is called static scope. An equally sensible way

of resolution is dynamic scope. Under the regime of dynamic scope, a variable
occurrence picks up the last dynamically preceding binding of the variable, i.e.,
the last executed binding for the variable.

Executing the above definition with dynamic scope yields 10 because the
last executed binding of x before entering g was the parameter passing of 10 to
function h.

Most often, dynamic scope is not the expected behavior. However, there are
a few useful applications for it, for example, redefining standard output ports
by rebinding them before calling the output procedure. A few languages use
dynamic scope by default, among them TEX and Emacs Lisp.

Exercise: Modify a semantics style of your choice to evaluate function calls
with dynamically scoped variables.

40

8 First Class Functions

The next step is to make functions first class, that is, to promote them to being
expressed values. In the syntax, the main novelty is to have an expression to
construct a function (function abstraction) and an expression to deconstruct a
function (function application). (We’ll drop named functions for now, they can
be added in the same way as before.)

Exp ∋ e ::= . . .
| v variables
| λv.e function abstraction
| e e function application

For brevity, we stick to a mathematical notation for abstraction and appli-
cation. In actual programming languages, the notation varies widely.

// JavaScript

var f = function (x) { return x+1; };

f (0);

// Scheme

(define f (lambda (x) (+ x 1))

(f 0)

// ML

val f = fn x => x + 1

f 0

// Haskell

f = \x -> x + 1

f 0

// Java

interface Function {

int apply (x : int);

}

Function f = new Function { int apply (x : int) { return x+1; }};

f.apply (0);

It turns out that first-class functions are reasonably straightforward to model
in a big-step semantics. However, the original framework for first-class function,
the lambda calculus, has a small-step (reduction) semantics. Also, the denota-
tional model of a language with first-class functions requires further investigation
of domain theory.

Hence, the rest of this section contains a big-step description of a language
with first-class functions and the following sections will establish the foundations
for the other semantic frameworks.

The evaluation judgement still has the form ρ ⊢ e →֒ y but the definitions
of the components change.

y ∈ Val = Z+ Closure

〈ρ, v, e〉 ∈ Closure = Env× Var × Exp

ρ ∈ Env = Var →֒ Val

41

There are three main changes.

1. Each element 〈ρ, v, e〉 of Closure models a function closure where v is the
formal variable, e is the function’s body, and ρ is an environment that
determines the values of the free variables in e.

2. Since functions are now expressed values, a value may be a closure.

3. Consequently, the definitions of Val, Closure, and Env are mutually recur-
sive.

(var)
ρ(v) = y
ρ ⊢ v →֒ y

(lam)
ρ ⊢ λv.e →֒ 〈ρ, v, e〉

(abs)
ρ ⊢ e1 →֒ 〈ρ

′, v′, e′〉 ρ ⊢ e2 →֒ y2 ρ′[v′ 7→ y2] ⊢ e′ →֒ y
ρ ⊢ e1 e2 →֒ y

The rule (var) for variables is as before.
The rule (lam) for lambda abstraction grabs the environment (where the

function is defined!) and wraps it with the name of the formal parameter and
the function’s body in a closure.

The rule (app) for function application first attempts to evaluate the func-
tion part (sometimes called rator), e1, of the expression to a closure. Then it
evaluates the argument part (sometimes called rand), e2 of the expression. Fi-
nally, it evaluates the body of the closure in the environment where the closure
was defined extended with the bindung of the actual parameter y2 to the formal
parameter v′. The resulting value is the value of the function application.

The rules model call-by-value evaluation and static scoping because the free
variables in a function always refer to the value in the environment where the
function was created. This is implemented by the closure.

Example:

∅ ⊢ λx.x+ 4 →֒ 〈∅, x, x+ 4〉 ∅ ⊢ 17 →֒ 17
. . .

{x 7→ 17} ⊢ x+ 4 →֒ 21
∅ ⊢ (λx.x+ 4) 17 →֒ 21

Exercise:

1. Change the big-step semantics to model call-by-name (by introducing sus-
pensions).

2. Change the big-step semantics to model dynamic scope.

42

9 The Lambda Calculus

The Lambda Calculus will serve us (at least) two purposes.

• It provides the small-step semantics for first-class functions.

• It provides notation for the metalanguage of denotational semantics.

9.1 Syntax and reduction semantics

The lambda calculus is a logical reduction calculus: It consists of a language for
terms and a set of reduction rules which describe how to transform terms into
other terms.

Definition 32 (Syntax of the lambda calculus) Let Var be a countable set
of variables. The following grammar defines the set Exp of lambda terms.

e ::= v | λv.e | e e

Terms of the form e0 e1 are applications, terms of the form λv.e are abstractions
with body e.

To save on parentheses, the following conventions apply to the representation
of lambda calculus terms:

• Applications are left-associative.

• The body of an abstraction reaches as far to the right as possible.

• λxy.e stands for λx.λy.e (analogously for more arguments).

Intuitively, the objects of the lambda calculus are functions: An abstraction
denotes a function, an application an—application. However, there are differ-
ent methods for evaluating terms containing functions: first inner terms, then
outer, or vice versa, left-to-right, or right-to-left. The lambda calculus, in its
original form, has only conversion rules that define a notion of equality between
terms. Imposing a direction on the conversion rules turns them into reduction
rules and suitable restrictions on where a reduction rule applies will describe
such strategies. To properly understand the implications of committing to a
particular strategy, it is necessary to first examine the general theory, however.

A description of the meaning of lambda terms requires some auxiliary defi-
nitions.

Definition 33 (Free and bound variables) The functions FV(),BV() : Exp→

43

P(Var) return the set of free or bound variables of a lambda term, respectively.

FV(x) := {x}

FV(e0 e1) := FV(e0) ∪ FV(e1)

FV(λx.e) := FV(e) \ {x}

BV(x) := ∅

BV(e0 e1) := BV(e0) ∪ BV(e1)

BV(λx.e) := BV(e) ∪ {x}

Furthermore, Var(e) := FV(e) ∪ BV(e) is the set of variables of e. A lambda
term e is closed (e is a combinator) iff FV(e) = ∅.

Definition 34 (Syntactic Substitution) For e, f ∈ E, e[x′ 7→ f] is induc-
tively defined by:

x[x′ 7→ f] =

{
f if x = x′

x if x 6= x′

(λx.e)[x′ 7→ f] =

{
λx.e if x = x′

λx′′.(e[x 7→ x′′][x′ 7→ f]) if x 6= x′, x′′ /∈ FV(e) ∪ FV(f) ∪ {x′}
(e0 e1)[x

′ 7→ f] = (e0[x
′ 7→ f]) (e1[x

′ 7→ f])

Definition 35 (Reduction rules) There are three different notions of reduc-
tion for the lambda calculus: α reduction, β reduction, and η reduction. Each
is a binary relation on lambda terms.

λx.e →α λy.e[x 7→ y] y 6∈ FV(e)
(λx.e) f →β e[x 7→ f]
(λx.e x) →η e x 6∈ FV(e)

Every term matching the left side of a reduction rule is a redex.
Each notion of reduction is compatibly extended to work in all contexts. That

is,

e→x e′

λy.e→x λy.e′
e0 →x e′0

(e0 e1)→x (e′0 e1)
e1 →x e′1

(e0 e1)→x (e0 e′1)

For x ∈ {α, β, γ},
∗
→x is the reflexive-transitive closure, and ↔x is its sym-

metric closure, and
∗
↔x is its reflexive-transitive-symmetric closure.

A β-reduction step corresponds closely to the intuitive notion of function
application.

Lambda terms will be considered equivalent if only the names of their bound
variables differ (i.e., if they are α-convertible). If variable names matter, e ≡ e′

indicates that e and e′ are identical, including the names of bound variables.

Definition 36 (Normal form) Let e be a lambda term. A lambda term e′ is

a normal form of e iff e
∗
→β e′ and if there is no e′′ with e′ →β e′′.

44

Lambda terms with equivalent (equal modulo α reduction) normal forms exhibit
the same behavior. The reverse is not always true. Also, some lambda terms
do not have a normal form:

(λx.x x)(λx.x x)→β (λx.x x)(λx.x x)

Theorem 4 (Church-Rosser) The β reduction has the Church-Rosser prop-
erty:

β∗

β∗

β∗

e1 e2

e′

In words: For all lambda terms e1, e2 with e1
∗
↔β e2, there is a lambda term e′

with e1
∗
→β e′ and e2

∗
→β e′.

Corollary 1 (Uniqueness of Normal Form) A lambda term e has at most
one normal form modulo α reduction.

9.2 Programming in the lambda calculus

The lambda calculus may at first seem a fairly silly way to go about describing
functions: In the world of the lambda calculus, there is nothing but functions,
and the scarcity of its language seems to allow for only the most primitive
computations (if any). Nevertheless, the lambda calculus has the same com-
putational power as any programming language. (The theoreticians say it is
“Turing-equivalent.”)

Adding conventional programming language constructs to the lambda calcu-
lus is somewhat tedious. As such, these constructions are not readily usable for
programming language implementations. However, it is good to have a work-
ing knowledge of the necessary mechanisms if only to get some practice dealing
with the calculus. In practice, the “pure” lambda calculus gives way to an “ap-
plied” lambda calculus which has the necessary built-in data types and primitive
operations on them to directly perform useful computations.

What constructs are necessary for useful computations? The lambda calcu-
lus at first glance seems to lack the following fundamental ingredients:

• some sort of conditional and booleans,

• numbers, and

• recursion.

45

These are (almost) the elements of the theory of recursive functions. An applied
lambda calculus typically has all of these, but it is possible to model all of them
(and more) in the pure one. This yields an informal proof that every recursive
function on natural numbers can be encoded in a lambda term. Consequently,
every Turing machine can be simulated by a lambda term. To prove Turing-
equivalence, as hinted above, it is now sufficient to implement β-reduction on a
Turing machine.

9.2.1 Booleans and conditionals

Conditionals have the form if e then e1 else e2: Depending on the (boolean)
result of evaluating e, the conditional “selects” either e1 or e2. The way to go
in the lambda calculus is to give booleans themselves an “active” interpretation
that performs the selection by itself. Thus, true is a lambda term that selects
the first of two arguments, and false is one that selects the second:

true = λxy.x

false = λxy.y

Consequently, the conditional degenerates to an identity function:

ite = λtxy.t x y

It is straightforward to verify that if actually adheres to the intuition. For a
true test, the beta reduction goes like this:

if true e1 e2 = (λtxy.t x y) true e1 e2
→β (λxy.true x y) e1 e2
→2

β true e1 e2
= (λxy.x) e1 e2
→β (λy.e1) e2
→β e1

For false, the proof goes analogously.

9.2.2 Numbers

Numbers can be represented in several different ways by lambda terms. One is
to use Church numerals. The Church numeral ⌈n⌉ of some natural number n is
a function which takes two parameters, a function f and some x, and applies f
n-times to x. (Hence, ⌈0⌉ is the identity.)

⌈n⌉ = λfλx.f (n)(x)

where

f (n)(e) =

{
e if n = 0

f(f (n−1)(e)) otherwise

46

The successor function adds an application:

succ = λn.λfλx.n f (f x)

The predecessor is somewhat more complicated:

pred = λx.λy.λz.x (λp.λq.q (p y)) ((λx.λy.x) z) (λx.x)

(A proof that it actually does subtract one from a Church numeral is a worth-
while exercise.)

Also, a test for zero is possible:

zero? = λn.n (λx.false) true

Again, a simple test case serves as an example:

zero? ⌈0⌉ = (λn.n (λx.false) true) ⌈0⌉
→β ⌈0⌉ (λx.false) true
= (λf.λx.x) (λx.false) true
→β (λx.x) true
→β true

9.2.3 Recursion

The only thing missing now is recursion. Since a recursive function needs to
refer to itself, it needs to receive a name which is passed to it by a magical term
called a fixpoint combinator. The magic is sufficient to warrant a theorem:

Theorem 5 (Fixpoint theorem) Every lambda term has a fixpoint.

That is, for every lambda term f there is a lambda term e with f e
∗
↔β e.

Proof:

Choose e := Y f with

Y := λf.(λx.f (x x)) (λx.f (x x)).

Then:
Y F = (λf.(λx.f (x x)) (λx.f (x x)) F

→β (λx.F (x x)) (λx.F (x x))
→β F ((λx.F (x x)) (λx.F (x x)))
←β F ((λf.(λx.f (x x)) (λx.f (x x))) F)
= F (Y F)

A fixpoint combinator suitable for multiple recursion does not involve new prin-
ciples, but is tedious to formulate.

As an example, consider expressing the recursive definition of the factorial
function

fac n = if (zero? n) ⌈1⌉ times n (fac (pred n))

47

where times and pred are multiplication and predecessor functions. An equiva-
lent non-recursive definition can be found using the fixpoint combinator.

fac ′ = Y (λf n.if (zero? n) ⌈1⌉ times n (f (pred n)))

It is straightforward to show that, for all n ∈ N, fac ⌈n⌉
∗
↔β fac ′ ⌈n⌉.

9.2.4 Pairs

Other data structures are readily implementable, too. For example, a pair can
be encoded as a function that takes a projection function and applies it to the
components of the pair. Hence, the selectors take a pair and apply it to the
appropriate projection function.

pair = λxyt.t x y
fst = λp.p λxy.x
snd = λp.p λxy.y

9.3 Evaluation strategies

Since vanilla β reduction applies to arbitrary subterms, having normal forms
is of limited value: It is not clear how to compute them because success is
highly dependent on the order in which subterms are subject to reduction. In
the practice of programming, full normal forms are rarely important. Instead,
it is usually sufficient to evaluate lambda terms to the point where they are
simple values or abstractions; it is not necessary to evaluate anything “inside
the lambda.” This leads to the notion of weak head-normal forms :

Definition 37 (Weak head-normal form) A lambda term which is an ab-
straction is called a value or a weak head-normal form. All other lambda terms
are called expression juxtapositions.

Next, it is desirable to formulate deterministic strategies that prescribe how to
evaluate a λ term to its weak head-normal form, so-called evaluation strategies.
A succinct formalism for describing such strategies are evaluation contexts as
introduced before.

As usual, for each notion of evaluation, a suitable set of lambda terms must
be identified as answers or values, which qualify as results of an evaluation.
To make sense, values should not evaluate further (they should be in WHNF).
In addition, evaluation is only defined for closed lambda terms. Evaluation
contexts must be defined such that every lambda term e falls in one of the
following categories.

• e is a value;

• e can be uniquely written as E[r] where E is an evaluation context and r
is a redex;

• e is stuck (it cannot be reduced further).

48

The last case does not occur in the pure lambda calculus. In an applied calculus
with built-in constants, it corresponds to a type mismatch.

Hence, we start with defining a notion of value.

Val ∋ y ::= λx.e

It turns out that weak head-normal forms are suitable as values for all common
evaluation strategies. All other terms (of the form e0 e1) are non-values.

The two important strategies for computing weak head-normal forms are
called call-by-name and call-by-value:

Definition 38 (Call-by-name lambda calculus) Call-by-name evaluation con-
texts are defined by

En ::= [] | En e.

The call-by-name one-step evaluation relation →βn is defined by:

En[(λx.e) f]→βn En[e[x 7→ f]].

The call-by-name evaluation function is a partial function evaln : Exp → Exp

where evaln(e) = y iff there exists a value y such that e→∗
βn y.

Unfortunately, the call-by-name lambda calculus is of limited value for program-
ming language implementation—it may evaluate a subexpression multiple times.
Real-world programming languages either use a refinement of the call-by-name
strategy to avoid multiple evaluation (lazy evaluation) or use a call-by-value
strategy which evaluates arguments to lambda abstractions before β-reducing
them.

Definition 39 (Call-by-value lambda calculus) Call-by-value evaluation con-
texts are defined by

Ev ::= [] | (Ev e) | (y Ev).

The call-by-value one-step evaluation relation →βv on lambda terms is de-
fined by

Ev[(λx.e) y]→βv Ev[e[x 7→ y]].

The call-by-value evaluation function is a partial function evalv : Exp → Exp

where evalv(e) = y iff there exists a value y such that e→∗
βv y.

In this definition, β-reduction is restricted to a βv-reduction where the ar-
gument position in the redex is already a value.

None of the above strategies is guaranteed to compute a normal form for the
original unrestricted notion of β-reduction. Therefore, theoretician consider less
restrictive strategies, normal-order reduction and applicative-order reduction,
which have different properties.

Normal-order reduction always finds the normal form of a lambda term if it
has one. Intuitively, it corresponds to always choosing the leftmost-outermost
β-redex. To specify it, the final result of such an evaluation must be described.

49

Hence, answers are now normal forms of lambda terms. The following grammar
generates the set Nf of normal forms. They are ranged over by n.

n ::= m | λv.n
m ::= v | m n

Exercise: show that Nf is exactly the set of normal forms in the pure lambda
calculus.

Definition 40 (Normal-order reduction) Leftmost-outermost evaluation con-
texts are defined by

Eo ::= [] | E′
o e | λx.Eo

E′
o ::= [] | E′

o e

The normal-order reduction relation →βo (also called leftmost-outermost re-
duction or standard reduction) is defined by:

Eo[(λx.e) f]→βo Eo[e[x 7→ f]].

Standard reduction is an important construction because it finds a normal
form whenever one exists.

Theorem 6 (Standardization) If e has normal form n, then e
∗
→βo n.

There is a similar generalization for call-by-value evaluation.

Definition 41 (Applicative-order reduction) Leftmost-innermost evaluation
contexts are defined by

Ei ::= [] | (Ei e) | (n Ei) | λx.Ei.

The applicative-order reduction relation →βi (leftmost-innermost reduction) on
lambda terms is defined by

Ei[(λx.n) n
′]→βi Ei[n[x 7→ n′]].

9.4 Applied Lambda Calculus

Neither Church numerals nor the fixpoint combinator are particularly efficient
ways of implementing realistic programs. Therefore, real programming lan-
guages incorporate the lambda calculus in some applied form which already
contains essential primitive data types and their operations as well as recursion.
In the simplest form, the values and operations of these data types are supplied
as constants with special reduction rules, called δ reductions.

Usually, each constant c(a) has an arity, a, and its δ reduction is defined by
a partial function δc : Val

a → Val which maps an a-tuple of terms in WHNF to
a term in WHNF. The generic definition of δ reduction is thus

c(a) v1 . . . va →δ v if ((v1, . . . , va), v) ∈ δc

50

For this to make sense, the definition of WHNF (Val, respectively) needs to
extended:

Val ∋ y ::= λv.e | c(a) y1 . . . yk where 1 ≤ k < a

For instance, an applied lambda calculus with integers and addition would
have a nullary constant ⌈n⌉ for each integer n as well as a constant +(2) with
δ+ defined by:

δ+(⌈m⌉, ⌈n⌉) = ⌈m+ n⌉

Hence, the set of values is extended as follows:

y ::= · · · | ⌈n⌉ | + | + y.

9.5 Execution Errors and Typing Disciplines

In an applied lambda calculus, there are usually terms which cannot be evalu-
ated further although they are not in weak head-normal form. These terms are
called stuck terms. They are regarded as execution errors because they amount
to misinterpretation of data. Here are some examples.

⌈5⌉ v number used as a function, arity mismatch
+ (λx.e) v operand out of domain
if (λx.e) then e1 else e2 type mismatch
if ⌈42⌉ then e1 else e2 type mismatch

Programming languages take one of two stances. Either they expect the
compiler to generate code that tests all operands before it executes an operation.
Or they impose a typing discipline that rules out some or all programs that
may lead to execution errors. The first case is often called dynamic typing or
dynamic checking and it requires that every value is equipped with sufficient
type information at runtime. The other case amounts to static typing or static
checking and it imposes on the compiler writer the burden of implementing a
type checker to enforce the typing discipline. Depending on the discipline, this
task can range from straightforward through demanding to impossible (there
are some typing disciplines with undecidable type checking).

Another distinction with a similar flavor is the one between strong typing and
weak typing. In a strongly typed language, each value has one designated type
and only operations for this particular type apply to the value. Weakly typed
languages usually a notion of conversion (or coercion) that silently converts
unsuitable operands into suitable arguments for an operation.

Both concepts are independent of each other. A language can be strongly
typed with a dynamic typing discipline (e.g., Scheme) or it can be weakly typed
with a static typing discipline (old versions of the C language, PL/1). In many
cases, however, the combinations are either strong, static typing (Haskell, ML)
or weak, dynamic typing (JavaScript). Java is a special case because a strong,
static type discipline is meant to imply that no type mismatches can occur at
runtime. However, this is not true in Java due to the presence (and wide use)
of type casts in the language.

51

9.6 Denotational Semantics

Now is the time to look at a denotational semantics for an applied lambda
calculus. Our constants will be the familiar ones, integer constants and binary
addition, and we’ll include the conditional, too.

Due to the presence of first-class functions, we are once again in the nice
situation that the denoted values coincide with the expressed values. However,
the corresponding domain turns out to be nontrivial to construct.

Clearly, the domain must comprise Z⊥ for modeling numbers and B⊥ for
modeling truth values. In addition, the semantics should be able to tell these
two subsets apart, hence it must contain a sum of Z⊥ and B⊥. But which
one? The separated sum would enable us to distinguish an undefined number
from an undefined boolean, whereas the coalesced sum would only allow this
distinction on defined values. Currently, the calculus does not contain any
operators to make this distinction, but we would like the semantics to report
errors by returning by returning a dynamic “type error message” (instead of
mapping them to ⊥). This motivates the use of the separated sum for the call-
by-name case whereas call-by-value semantics require the use of the coalesced
sum. Hence:

Valn = Z⊥ +B⊥ + . . .
Valv = Z⊥ ⊕B⊥ ⊕ . . .

In both cases, the missing part is a summand for modeling functions. Clearly,
we would like to model functions by a function space [V → V], but this has two
tricky twists. The first one is that it is possible in a call-by-value language to
defined a context that distinguishes between ⊥ ∈ [V → V] and λx.⊥ ∈ [V →
V]: the context

(λxy.y) []

becomes undefined when ⊥ is plugged into the hole and λy.y, otherwise. To
make this distinction denotationally, require lifting the function space: [V →
V]⊥. To be fully precise, we could further restrict the function space to strict
functions in the call-by-value case.

The second twist is the question, what is V in this definition? Since V
should range over the domain of expressed values, it should be Valn or Valv,
respectively. That is:

Valn = Z⊥ +B⊥ + [Valn → Valn]⊥ + . . .
Valv = Z⊥ ⊕B⊥ ⊕ [Valv → Valv]⊥ ⊕ . . .

These definitions contain a novelty, namely that a semantic domain is defined
recursively, it is specified by a recursive domain equation. It turns out that
domains can be specified as solutions of such equations but it is non-trivial to
establish the existence of these solutions. We’ll take them as granted for the
moment and leave that topic to later investigation. In fact, all equations that
start from flat domains and use the domain constructions introduced so far have
solutions. One particular way of demostrating that is to show that there exists a

52

universal domain, that is, a CCPO that contains all flat CCPOs as sub-CCPOs,
where the class of sub-CCPOs is closed under the domain constructions, and
where certain functions on the class of sub-CCPOs have fixpoints.

One last ingredient is missing in the domain cocktail, the treatment of errors.
For that, we’ll construct a one-point domain W with W = {wrong} and add it
to each domain equation.

Valn = Z⊥ +B⊥ + [Valn → Valn]⊥ +W
Valv = Z⊥ ⊕B⊥ ⊕ [Valv → Valv]⊥ ⊕W

For better readability, instead of writing In1, In2, etc for the injection functions
into Valx, we use symbolic tags InZ, InB, InF, and InW with the obvious
meaning.

The type of the semantic function for expressions is now, for x ∈ {n, v},

E : Exp→ Envx → Valx
Envx = Var→ Valx

Since the machinery for modeling execution errors is now available, the empty
environment is the function ρ0 = λv.InW (wrong) which maps every variable
to an error.

Here are the semantic equations for the call-by-name case.

EJnK = λρ.InZ (CJnK)
EJe1 + e2K = λρ. case (EJe1Kρ) of

InZ y1 → case (EJe2Kρ) of
InZ y2 → InZ (y1 + y2)
→ InW (wrong)

→ InW (wrong)
EJif e1 e2 e3K = λρ. case (EJe1Kρ) of

InB y → ite(y, EJe2Kρ, EJe3Kρ)
→ InW (wrong)

EJvK = λρ.ρ(v)
EJλv.eK = λρ.InF (λy.EJeKρ[v 7→ y])
EJe1 e2K = λρ. case (EJe1Kρ) of

InF (y)→ y(EJe2Kρ)
→ InW (wrong)

For obtaining a call-by-value semantics, all the injections and cases need to be
annotated with ⊕, but only one line needs to change:

EJλv.eK = λρ.InF (λy.ite(y = ⊥,⊥, EJeKρ[v 7→ y]))

53

10 Simple Types

The applied lambda calculus shares a feature with many programming lan-
guages. It has a built-in concept of a type and refuses to evaluate programs
with a type conflict (as demonstrated in Section 9.5).

This problem stipulates the design of an analysis that infers from a given
program whether it can possibly lead to a type conflict. Such an analysis relies
on a formal system, a type system. The present section introduces the simplest
of these systems, the simply typed lambda calculus. There are two different
flavors to that calculus. In Church-style, each binding occurrence of a variable
is labeled with the intended type of the variable. In Curry-style, typing is
completely separate from the terms. Our presentation adheres to Curry-style.

Background reading: John C. Mitchell, chapter 4 of Foundations for Pro-
gramming Languages, MIT-Press, Cambridge, MA, 1996.

Type systems are customarily defined using deduction systems. The judg-
ment of the system, the typing judgment, relates a typing environment, Γ, and
an expression, e, to a type, τ :

Γ ⊢ e : τ

The types of the simply typed lambda calculus are generated by the grammar

Type ∋ τ ::= α | Int | τ → τ

where α is a type variable, drawn from a set TVar, Int is a type constant, and
τ ′ → τ ′′ is the type of functions that map values of type τ ′ to values of type
τ ′′. (For the pure lambda calculus, type variables and function types suffice.)
Remember: all this is only syntax!

A typing environment acts like a finite map from Var to Type. It is generated
by

Γ ::= ∅ | Γ, v : τ

Often, the case Γ, v : τ is restricted so that variable v must not occur in Γ. The
following definition enables us to use a typing environment as a finite map and
to write dom(Γ) for the set of variables defined in Γ.

(Γ, v : τ)(v′) =

{
τ v = v′

Γ(v′) v 6= v′

54

The typing judgment is defined by the following inference rules.

Γ ⊢ n : Int

Γ ⊢ e : Int Γ ⊢ e′ : Int
Γ ⊢ e+e′ : Int

Γ ⊢ e1 : Int Γ ⊢ e2 : τ Γ ⊢ e3 : τ
Γ ⊢ if e1 e2 e3 : τ

Γ(v) = τ
Γ ⊢ v : τ

Γ, v : τ ′ ⊢ e : τ ′′

Γ ⊢ λv.e : τ ′ → τ ′′

Γ ⊢ e : τ ′ → τ Γ ⊢ e′ : τ ′

Γ ⊢ e e′ : τ

Example: type derivation for y : τ ⊢ (λx.x) y : τ .

10.1 Static Properties

Type derivations are quite well-behaved and enjoy a number of properties. First
of all, the typing environment must contain typings for all free variables.

Lemma 23 If Γ ⊢ e : τ , then FV(e) ⊆ dom(Γ).

Next, type assumptions for variables not appearing in the expression may be
omitted. This is called weakening.

Lemma 24 If Γ, v : τ ⊢ e : τ ′ and v /∈ FV(e), then Γ ⊢ e : τ ′.

Renaming extends in the obvious way to typing environments. Consistent re-
naming is also compatible with typing.

Lemma 25 If Γ ⊢ e : τ and y /∈ dom(Γ), then Γ[x 7→ y] ⊢ e[x 7→ y] : τ .

An important property is the substitution lemma for expressions. It holds (with
slight variations) for virtually all type systems.

Lemma 26 (Expression Substitution) If Γ, x′ : τ ′ ⊢ e : τ and Γ′ ⊢ e′ : τ ′

and Γ ∪ Γ′ is a well-formed typing environment, then Γ ∪ Γ′ ⊢ e[x′ 7→ e′] : τ .

55

10.2 Type Inference

Quite often, we are not interested in writing down all typings but rather in
having an algorithm that infers a valid typing for a term. Ideally, the algorithm
infers the best possible typing, whatever that may be. For the simply-typed
lambda calculus, it turns out that each term has a “best possible” type, which
is called a principal type. This has been shown independently by Hindley and
Milner.

To determine a principal type requires an ordering relation on types. This
relation is defined in terms of substitution.

Definition 42 A term t′ is an instance of term t, if there is a substitution σ′′

such that t′ = σ′′(t). Notation: t ⊑ t′.

The relation ⊑ is a preorder (reflexive and transitive). It can be lifted to a
preorder on substitutions. (Exercise: prove this and give an example that ⊑ is
not a partial ordering.)

Definition 43 Let σ, σ′ be substitutions. Define σ ⊑ σ′ if there exists a sub-
stitution σ′′ such that σ′ = σ′′ ◦ σ.

The relations on types and substitutions need to be further extended, once
to pairs of a type and a substitution on type variables, (τ, σ), and to entire
typing judgements.

Definition 44 (τ, σ) ⊑ (τ ′, σ′) iff exists σ′′ such that τ ′ = σ′′(τ) and σ′ =
σ′′ ◦ σ.

Definition 45 Γ ⊢ e : τ ⊑ Γ′ ⊢ e : τ ′ iff dom(Γ) ⊆ dom(Γ′) and there exists σ′′

such that (∀v ∈ dom(Γ)) Γ′(v) = σ′′(Γ(v)) and τ ′ = σ′′(τ).

Given a type derivation for judgement J , it turns out to be trivial to generate
arbitrary many derivable judgements J ′ with J ⊑ J ′.

Lemma 27 (Type Substitution) Suppose that Γ ⊢ e : τ and let σ be an
arbitrary substitution. Then σ(Γ) ⊢ e : σ(τ).

Definition 46 Suppose that Γ is a type environment and e is a term (with
FV(e) ⊆ dom(Γ)).

A solution for the type inference problem for Γ and e is a pair (σ, τ), where
σ is a type substitution (from type variables to types) and σ(Γ) ⊢ e : τ .

(σ, τ) is a principal solution if, for all solutions (σ′, τ ′), (σ, τ) ⊑ (σ′, τ ′). In
this case, τ is a principal type for e.

Another related notion also considers the type environment as an unknown.

Definition 47 The typing judgment J = Γ ⊢ e : τ is a principal typing for e,
if for each typing judgment J ′ = Γ′ ⊢ e : τ ′ it holds that J ⊑ J ′.

56

unify(∅) = { }
unify(E ∪ {α = τ}) = if α ∈ Var(τ) ∧ τ 6= α then fail

else unify({α 7→ τ}(E)) ◦ {α 7→ τ}
unify(E ∪ {α = α}) = unify(E)
unify(E ∪ {Int = Int}) = unify(E)
unify(E ∪ {τ1 → τ2 = τ ′1 → τ ′2}) = unify(E ∪ {τ1 = τ ′1, τ2 = τ ′2})
unify(E ∪ {τ1 → τ2 = Int}) = fail

In the algorithm, we consider = as symmetric.

Figure 1: Unification algorithm for types

The construction of a type inference algorithm requires the types computed
for the subterms of, say, an application e1 e2, have a certain shape. For instance,
if the algorithm has found type τ1 for e1 and τ2 for e2, then τ1 must have the
form τ2 → τ3, for some τ3, for the typing to succeed. Phrased differently, the
algorithm needs to find a substitution S, such that S(τ1) = S(τ2 → α) where α
is a new type variable. Fortunately, there is an algorithm that finds “the best”
such substitution or fails if none exists.

Definition 48 Let E be a set of identities between terms.
A substitution σ is a unifier of E if, for all identities (t, t′) ∈ E , σ(t) = σ(t′).

Lemma 28 (Robinson 1965) Let E be any set of identities between terms.
There is an algorithm unify such that

• if σ′ is a unifier for E, then σ = unify(E) and σ ⊑ σ′,

• if no unifier exists for E, then unify(E) fails.

Figure 1 defines the unification algorithm.
The algorithm in Figure 2 computes a typing for a term of the simply-typed

lambda calculus. It maps a lambda term to a typing judgement for the term.
Each type inference algorithm comes with two technical results.

• The correctness property states that type inference only produces deriv-
able types.

• The completeness produces states that, whenever a type derivation exists
for the term, then the algorithm will find a corresponding, more general
judgement. In other words, the algorithm finds a principal type (or typ-
ing).

Theorem 7 (Correctness of Type Inference) Suppose that PT(e) = Γ ⊢
e′ : τ . Then e = e′ and Γ ⊢ e : τ is derivable.

57

PT(v) = v : α ⊢ v : α α fresh
PT(λv.e) = let Γ ⊢ e′ : τ = PT(e)

in if v /∈ dom(Γ)
then Γ ⊢ λv.e′ : α→ τ α fresh
else Γ \ {v} ⊢ λv.e′ : Γ(v)→ τ

PT(e1 e2) = let Γ1 ⊢ e′1 : τ1 = PT(e1)
Γ2 ⊢ e′2 : τ2 = PT(e2)
Var(Γi, τi) pairwise disjoint
σ = unify(Γ1,Γ2; {τ1 = τ2 → α}) α fresh

in σ(Γ1) ∪ σ(Γ2) ⊢ e′1 e′2 : σ(α)
PT(n) = ∅ ⊢ n : Int
PT(e1+e2) = let Γ1 ⊢ e′1 : τ1 = PT(e1)

Γ2 ⊢ e′2 : τ2 = PT(e2)
Var(Γi, τi) pairwise disjoint
σ = unify(Γ1,Γ2; {τ1 = Int, τ2 = Int})

in σ(Γ1) ∪ σ(Γ2) ⊢ e′1+e′2 : Int
PT(if e1 then e2 else e3)

= let Γ1 ⊢ e′1 : τ1 = PT(e1)
Γ2 ⊢ e′2 : τ2 = PT(e2)
Γ3 ⊢ e′3 : τ3 = PT(e3)
Var(Γi, τi) pairwise disjoint
σ = unify(Γ1,Γ2,Γ3; {τ1 = Int, τ2 = τ3})

in σ(Γ1) ∪ σ(Γ2) ∪ σ(Γ3) ⊢ if e′1 then e′2 else e′3 : σ(τ2)

In the algorithm, unify(Γ1,Γ2) is a shorthand for unify({Γ1(x) = Γ2(x) | x ∈
dom(Γ1) ∩ dom(Γ2)}), and similarly unify(Γ1,Γ2,Γ3) collects identities for all
pairs of type environments.

Figure 2: Algorithm for principal typing

58

Theorem 8 (Completeness of Type Inference) Suppose that J ′ = Γ′ ⊢
e : τ ′ is derivable, for some Γ′ and τ ′.

Then there exist Γ and τ such that PT(e) = Γ ⊢ e : τ ⊑ J ′.

Hence, the simply-typed lambda calculus possesses principal typings and the
PT algorithm computes them. This is a an important, non-trivial property.

10.3 Dynamic Properties

The dynamic properties relate the typing judgement to one of the semantics.
Since the type system is supposed to predict to some extent the outcome of
a computation, each computation step should be compatible with the typing
relation. In the context of the reduction semantics of the lambda calculus, the
required property is called subject reduction: whenever a typed term can make
a computation step, then the resulting term is typable with the same type.

Lemma 29 (Subject Reduction) If Γ ⊢ e : τ and e→ e′, then Γ ⊢ e′ : τ .

In this lemma, the relation → is one-step βη reduction plus the delta rules for
addition and the conditional, all permitted in an arbitrary context.

This is easily generalized to sequences of computations steps.

Lemma 30 If Γ ⊢ e : τ and e
∗
→ e′, then Γ ⊢ e′ : τ .

Subject reduction seems to be closely connected to type correctness since
it implies that computation does not change the type of a term. However, it
does not make guarantees that terms do not get stuck, eventually, before being
reduced to values. This requires another statement which is customarily called
progress.

Lemma 31 (Progress) If Γ ⊢ e : τ , then exactly one of the following holds.

1. e is a value.

2. There is some e′ such that e→ e′.

A suitable set of values for our simply typed lambda calculus is

y ::= n | λv.e

Proving the progress lemma requires another straightforward auxiliary re-
sult.

Lemma 32 (Classification) Suppose that Γ ⊢ y : τ .

• If τ = Int, then y = n, for some n.

• If τ = τ ′ → τ ′′, then y = λv.e, for some v and e.

Subject reduction and progress taken together yield a type soundness result.

59

Theorem 9 (Type Soundness) If ∅ ⊢ e : τ , then exactly one of the following
is true.

• There exists a value y such that e
∗
→ y and ∅ ⊢ y : τ .

• For each e′ such that e
∗
→ e′ there exists e′′ such that e→ e′′.

When starting from an evaluation-step relation such as βn in the previous
section, the requirement of “subject reduction” can be weakened to “type preser-
vation”. This is just a restatment of the above, but in terms of the deterministic
evaluation relation.

Lemma 33 (Type Preservation) If Γ ⊢ e : τ and e→βn e′, then Γ ⊢ e′ : τ .

It would also be sufficient to only state and prove type preservation for closed
terms, since evaluation always starts with a closed term and this property is
preserved by each evaluation step.

Exercise: Prove that closed terms remain closed under reduction.
At last, the simply-typed lambda calculus has the surprising property that

every simply-typed lambda term has a normal form!

Theorem 10 (Strong Normalization) Suppose that Γ ⊢ e : τ . Then there

exists a term e′ with e
∗
→βη e′ such that e′ is in normal form.

The symbol →βη denotes reduction in arbitrary context.

10.4 Type Soundness, Denotationally

Type soundness can also be expressed in a denotational setting. To that end,
recall the domain of expressed values for the call-by-name variant of the applied
lambda calculus:

Valn = Z⊥ +B⊥ + [Valn → Valn]⊥ +W

where W = {wrong}.
An easy way of stating type soundness is to postulate that

∅ ⊢ e : τ ⇒ EJeK(λy.InW (wrong)) 6= InW (wrong)

However, it turns out that this statement needs to be rephrased in a positive
way to be amenable to proof. A prerequisite is to fix what exactly we mean
with a type. We use an development due to MacQueen, Plotkin, and Sethi (An
Ideal Model for Recursive Polymorphic Types, Information and Computation
71:92–130, 1986) which is richer than strictly required at this point, but which
extends easily to later additions to the type system.

Definition 49 Let A be a CCPO and I ⊆ |A|.
I is a (weak) ideal of A if

60

1. (non-empty) I 6= ∅,

2. (downward closed) for all x ∈ I, y ∈ |A|, if y ⊑ x then y ∈ I,

3. (chain complete) if X ⊆ I is a chain in A, then
⊔
X ∈ I.

Let I(A) be the set of ideals of A.

We aim at modeling types as particular ideals in Valn that do not contain
wrong. Let K(Valn) be the set of ideals of Valn that do not contain wrong. It is
straightforward to verify that the injections of Z⊥ and B⊥ in Valn yield ideals.
Functions require an auxiliary definition.

Definition 50 Let A be a CCPO and X,Y ⊆ |A|.
Define X →Y = {f ∈ [A→ A] | x ∈ X ⇒ f(x) ∈ Y }.

This construction turns out to be an operation on ideals.

Lemma 34 Let A be a CCPO and I, J ∈ I(A). Then I→J ∈ I(A→ A).

Proof: We verify the items of the definition in turn.

1. ⊥ ∈ I→J 6= ∅.

2. Let f ∈ I →J and g ∈ [A → A] with g ⊑ f . If x ∈ I, then g(x) ⊑ f(x).
Since f(x) ∈ J and J is downward closed, it holds that g(x) ∈ J , too.

3. Let F ⊆ I → J be a chain in [A → A]. Since [A → A] is a CCPO,⊔
F ∈ [A→ A]. For all x ∈ I, the set Yx = {f(x) | f ∈ F} is a chain in J

so that
⊔
Yx ∈ J . Since (

⊔
F)(x) =

⊔
Yx ∈ J , the result follows.

These definitions enable us to define the semantics of a type as follows.

Definition 51 The function T J·K : Type→ P(|Valn|) is defined by

T JIntK = {⊥} ∪ {InZ (z) | z ∈ Z⊥}
T JBoolK = {⊥} ∪ {InB(b) | b ∈ B⊥}
T Jτ → τ ′K = {⊥} ∪ {InF (f) | f ∈ T JτK→T Jτ ′K}

Lemma 35 For each τ ∈ Type, T JτK ∈ K(Valn).

A value environment ρ conforms to a typing environment if all variables in
ρ have values of the corresponding type.

Definition 52 Let ρ ∈ Var→ Valn and Γ a typing environment.
Γ |= ρ holds by definition if, for all v ∈ dom(Γ), ρ(v) ∈ T JΓ(v)K.

Theorem 11 (Semantic Type Soundness)
If Γ ⊢ e : τ and Γ |= ρ, then EJeKρ ∈ T JτK.

61

10.5 Extensions

On top of the minimal feature set considered for the simply-typed lambda cal-
culus, a programming language typically has recursion, as well as records (prod-
ucts), enumerated types (sums), and perhaps recursive types.

10.5.1 Recursion

In the untyped lambda calculus, the fixpoint combinator Y provides a means
to encode recursion. In the simply-typed lambda calculus, the term Y does not
have a type. This is not an accident of our choice of Y (perhaps we could choose
another fixpoint combinator), but rather caused by the structure of simple types.
Any fixpoint combinator can easily be used to construct terms without normal
form, for example, Y (λx.x). Hence, if Y had a type in simply-typed lambda
calculus, this would contradict the strong normalization result from Lemma 10.

However, a fixpoint operator can be added to the calculus without breaking
the results about types (clearly, strong normalization is lost).

e ::= · · · | fix e

A suitable notion of reduction for the fixpoint operator is

fix e→ e (fix e)

(This fixpoint operator is not suitable for call-by-value evaluation, since a call-
by-value reduction sequence starting with fix e does not terminate. We leave
the consideration of a call-by-value fixpoint operator as an exercise.) The typing
rule for this operator is

Γ ⊢ e : τ → τ
Γ ⊢ fix e : τ

Equivalently, the fix operator could be regarded as a constant of type (τ →
τ)→ τ , for each τ .

The denotational semantics of fix e is just the least fixpoint of the semantics
of e.

EJfix eK = λρ. case (EJeKρ) of
InF (y)→ fix y
→ InW (wrong)

10.5.2 Product and Record Types

Product types arise from adding a data type for pairs (or more generally tuples)
to the language. Each component of a pair has a type of its own. Records are
a simple variation of tuples where the components are named.

Here is a typical syntax for pairs.

e ::= · · · | (e, e) | π1(e) | π2(e)

62

The new constructs may be considered as constants in the applied lambda cal-
culus. (,) is a binary constant without reduction rules (hence, it serves as a data
constructor), whereas π1 and π2 are unary constants with reduction rules

π1(e1, e2)→ e1 π2(e1, e2)→ e2

In a call-by-value language, e1 and e2 are restricted to be values in thes reduction
rules. In a call-by-name language, (e1, e2) is a value (a weak head normal form)
even if neither e1 nor e2 is.

The type of pairs with component types τ1 and τ2 is written τ1 × τ2. The
corresponding typing rules are the obvious ones.

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2
Γ ⊢ π1(e) : τ1

Γ ⊢ e : τ1 × τ2
Γ ⊢ π2(e) : τ2

Abstractly, an n-tuple can be considered as a mapping from {1, . . . , n} to
the respective set of values for the ith component. A record generalizes this
mapping by using names (field labels) instead of numbers. Apart from that
difference, the reduction rules and typing rules are exactly like the ones for
products. The label names are drawn from an unspecified, denumerable set
Label, which is disjoint to all other syntactic categories.

l ∈ Label

e ::= · · · | [l1 = e1, . . . , ln = en] | e.l

The two operations are record construction and field selection. Sometimes, fur-
ther record operations are considered, for example, field update, record concate-
nation, record restriction, etc. These require more sophisticated type systems
and are left for future consideration. They play an important role in modeling
object orientation.

Operationally, the reductions are similar to the ones for pairs. Record con-
struction is a value that can be decomposed using field selection.

[l1 = e1, . . . , ln = en].li → ei

Again, call-by-value requires e1 . . . en to be values, whereas call-by-name allows
for records with unevaluated fields.

The type of a record is just the label-indexed collection of the field types as
in τ ::= · · · | [l1 : τ1, . . . , ln : τn]. Such a type is only well-formed if the labels
l1, . . . , ln are all distinct. The typing rules are also straighforward adaptations
of the ones for products.

(∀1 ≤ i ≤ n) Γ ⊢ ei : τi
Γ ⊢ [l1 = e1, . . . , ln = en] : [l1 : τ1, . . . , ln : τn]

Γ ⊢ e : [l1 : τ1, . . . , ln : τn]
Γ ⊢ e.li : τi

Record types have a degenerate case, the nullary record type where n = 0.
This type has just one element, the empty record [] of type []. It is often
considered separately as the unit type.

63

10.5.3 Sum and Variant Types

Dually to the product construction, the sum construction accumulates a set of
alternatives indexed by numbers. A variant is the named counterpart of a sum,
just like a record is the named counterpart of a product.

Here is the typical syntax for sums.

e ::= Inl e | Inr e | case e of Inl x→ e; Inr x→ e

The operators Inl and Inr serve as constructors that inject values into the left
or right summand. The case eliminates a sum by determining which summand
the value belongs to and extracting the respective component value. Hence,
there are no reduction rules for Inl and Inr, but two for case that generalize
the reduction for the conditional.

case (Inl e) of Inl x1 → e1; Inr x2 → e2 → e1[x1 7→ e]
case (Inr e) of Inl x1 → e1; Inr x2 → e2 → e2[x2 7→ e]

For call-by-value, again, e is restricted to a value. In call-by-name, for example,
Inl e is considered a value even if e is not.

The type of the sum of τ1 and τ2 is written τ1 + τ2. The typing rules are
dual to the rules for products.

Γ ⊢ e : τ1
Γ ⊢ Inl e : τ1 + τ2

Γ ⊢ e : τ2
Γ ⊢ Inr e : τ1 + τ2

Γ ⊢ e : τ1 + τ2 Γ, x1 : τ1 ⊢ e1 : τ Γ, x2 : τ2 ⊢ e2 : τ
Γ ⊢ case e of Inl x1 → e1; Inr x2 → e2 : τ

Variants behave very much the same way as sums. The syntax varies widely
between languages.

e ::= · · · | Inl(e) | case e of Inl(x)→ e; . . .

A variant type is written as [l1 : τ1 | · · · | ln : τn] where all labels are distinct.
(There is not really much difference between a one-field record and a variant
with one alternative). The typing rules are the obvious generalizations of the
ones for sums.

Γ ⊢ e : τi
Γ ⊢ Inli(e) : [l1 : τ1 | · · · | ln : τn]

Γ ⊢ e : [l1 : τ1 | · · · | ln : τn] (∀1 ≤ i ≤ n) Γ, xi : τi ⊢ ei : τ
Γ ⊢ case e of Inl1(x1)→ e1; . . . ; Inln(xn)→ en : τ

10.5.4 Recursive Types

The defining characteristic of a recursive type is that it may be defined in terms
of itself. Recursive types are used to model recursive data structures like lists
and trees without introducing concepts like memory or pointers.

64

11 State

The key feature of imperative programming languages is state and the notion of
a statement. In contrast to an expression that primarily serves to compute a
value, a statement does not compute a value but is executed for its effect on the
state. Also the mental model of a variable in such a language differs from the
mathematical idea. While functional programming considers a variable just as
a name for one particular value, a variable in imperative programming denotes
a container whose contents, the value, may change over time.

Starting from a traditional imperative core language, we’ll consider the most
important kinds of statements, extended the framework to dynamic data struc-
tures, and finally consider parameter passing strategies. Background material
may be found in the book Essentials of Programming Languages by Friedman,
Wand, and Haynes.

11.1 Modeling State

The key concept in modeling state is the store. The store is always modeled
as a mapping from some kind of locations to values. The choice of locations
depends on the particular language modeled. The most straightforward choice
is to model the store as a mapping from variable names to values. For example,
in a big-step operational semantics, we might have

σ ∋ Store = Var →֒ Val

y ∋ Val = Z+ . . .

The syntax of the archetypical imperative language IMP contains two cate-
gories, expressions and statements. We’ll stick to the most basic kind of expres-
sion, a variable, all extensions that have been discussed earlier can be applied.
Statements comprise the variable declaration, the assignment statement, the
empty statement, the sequence statement, if-then-else, and while statements.

e ::= v | . . .
s ::= var v variable declaration
| v:=e assignment
| skip empty statement
| s;s sequence
| if e then s else s conditional
| while e do s repetition

The meaning of an expression is defined by the familiar judgment

σ ⊢ e →֒ y

that has been discussed previously.
The meaning of a statement is a transformation of the store. Hence,

σ ⊢ s ❀ σ′

65

says that the action of statement s transforms store σ to store σ′. It is defined
by the following set of inference rules.

σ ⊢ var v ❀ σ[v 7→ 0]

σ ⊢ e →֒ y v ∈ dom(σ)
σ ⊢ v:=e ❀ σ[v 7→ y]

σ ⊢ skip ❀ σ

σ0 ⊢ s1 ❀ σ1 σ1 ⊢ s2 ❀ σ2

σ0 ⊢ s1;s2 ❀ σ2

σ ⊢ e →֒ 0 σ ⊢ s2 ❀ σ′

σ ⊢ if e then s1 else s2 ❀ σ′

σ ⊢ e →֒ y y 6= 0 σ ⊢ s1 ❀ σ′

σ ⊢ if e then s1 else s2 ❀ σ′

σ ⊢ e →֒ 0
σ ⊢ while e do s ❀ σ

σ ⊢ e →֒ y y 6= 0 σ ⊢ s ❀ σ′ σ′ ⊢ while e do s ❀ σ′′

σ ⊢ while e do s ❀ σ′′

For constructing a denotational semantics, we have to make the state trans-
formation explicit in the type of the denotations for statements. Hence, we
have

y ∋ Val = W⊥ ⊕ Z⊥ ⊕ . . .
σ ∋ Store = Var→ Val

µ ∋ MStore = Wrong + Store

γ ∋ Command = MStore→ MStore

where Wrong is the one-point CCPO with only element wrong. For each syn-
tactic category, there is a corresponding semantic function:

E : Exp→ Store→ Val

S : Stmt→ Command

The semantics of expressions is straightforward and therefore omitted. We only
assume that it returns wrong in case a variable is not defined in the store and

66

that wrong is propagated recursively.

SJvar vK = λµ.case µ of Inr σ → Inr σ[v 7→ 0]
Inl wrong→ Inl wrong

SJv:=eK = λµ.let y = EJeKσ in
case µ of

Inr σ → if y = ⊥ ∨ σ = ⊥
then ⊥
else if v /∈ dom(σ)
then Inl wrong
else Inr σ[v 7→ y]

Inl wrong→ Inl wrong
SJskipK = λµ.µ
SJs1;s2K = λµ.SJs2K(SJs1Kµ)
SJif e then s1 else s2K = λµ.case EJeKµ of In0(wrong)→ Inl wrong

In1(0)→ SJs2Kµ
→ SJs1Kµ

SJwhile e do sK = fix λw.λµ.case EJeKσ of In0(wrong)→ Inl wrong
In1(0)→ µ
→ w(SJsKµ)

The interesting parts in the semantics of statements are the assignment/variable
declaration statements and the while statement. The equation for the assign-
ment statement has to take care of two invariants. First, (assuming strict eval-
uation) the store should never contain undefined values. Second, assignment
must be strict with respect to the store: if the store is undefined, it should
never again become defined. The equation for the while statement employs a
fixpoint to model the repeated execution of the statements in the loop. Hence,
proving statements about a while loop requires fixpoint induction!

11.2 Dynamic Data Structures

Modeling dynamic data structures requires the introduction of a notion of loca-
tions separate from the variables. This modification, which requires a two-stage
access mechanism for variables, frees locations from the second-class status that
they assume in many languages. The store model is idealized inasmuch each
location can assume any value. While unrealistic, it simplifies the modeling and
avoids clutter in the definitions.

l ∋ Loc unspecified set of locations disjoint from Var etc.
σ ∋ Store = Loc →֒ Val

y ∋ Val = Z+ Loc+ . . .
ρ ∋ Env = Var →֒ Loc

With the refined model, the expression semantics needs both, an environ-
ment and a store. The environment is a mapping from variables to locations

67

where the association between variable and location remains fixed over the life-
time of the variable.

The meaning of an expression must now be defined by a judgment

σ, ρ ⊢ e →֒ y

which is defined similar as before. The only difference is the treatment of vari-
ables which is given by the following rule

ρ(v) = l σ(l) = y
σ, ρ ⊢ v →֒ y

The meaning of a statement has a judgment of type

σ, ρ ⊢ s ❀ σ, ρ

which is defined analogously to the previous subsection, except for the cases of
variable declaration and assignment.

l /∈ dom(σ)
σ, ρ ⊢ var v ❀ σ[l 7→ 0], ρ[v 7→ l]

σ, ρ ⊢ e →֒ y l = ρ(v) l ∈ dom(σ)
σ, ρ ⊢ v := e ❀ σ[l 7→ y], ρ

The manipulation of dynamic data structures requires further operators.
To keep things simple, we add operations for references (pointers to a value):
creating a reference, dereferencing it, and updating it with a new value.

e ::= · · · | get e
s ::= · · · | v:=new e | set e e

All the machinery is already in place, we just need to add new evaluation
rules to the semantics.

σ, ρ ⊢ e →֒ l y = σ(l)
σ, ρ ⊢ get e →֒ y

σ, ρ ⊢ e →֒ y l = ρ(v) l′ /∈ dom(σ)
σ, ρ ⊢ v:=new e ❀ σ[l 7→ l′, l′ 7→ y], ρ

σ, ρ ⊢ e1 →֒ l σ, ρ ⊢ e2 →֒ y
σ, ρ ⊢ set e1 e2 ❀ σ[l 7→ y], ρ

The corresponding extension to the denotational semantics is straightforward
and omitted.

68

11.3 Parameter Passing

In the presence of a store, there are new strategies of parameter passing refin-
ing call-by-value and call-by-name. When introducing procedures into the IMP

language, the following questions arise.

• Are formal parameters bound to values or to locations?

• In the latter case, are they assigned to newly allocated locations or to
existing ones?

• If a parameter is a location, is the referenced data structure copied or
aliased?

Varying the answers to these questions yields a number of different parameter
passing strategies and behaviors.

Binding formal parameters to values would make them variables in the math-
ematical sense. In fact, it would enforce the programming convention that
parameters should not be changed in a procedure body. However, usually pa-
rameters variables are bound to locations, so that they can be assigned to as
any other variable.

The question if parameters locations are freshly assigned determines whether
an assignment to the parameter is visible at the call site of the procedure.
Reusing the location of the call site corresponds to the call-by-reference strat-
egy. With that strategy, the caller has to ensure that each actual parameter is
represented by a location. If that parameter happens to be an expression, then
a fresh location must be allocated to hold the value of the expressions. The
language FORTRAN 90 employs call-by-reference throughout.

Allocating a new location and copying the referenced value to the new loca-
tion corresponds to call-by-value-result (the variant call-by-result just allocates
the new location without copying the value). Before returning from the proce-
dure, the value in the new location is copied back to the location at the call site
so that the effect of the procedure call becomes visible.

Call-by-reference and call-by-value-result are subtly different as the following
example demonstrates. Since values are passed as locations, a procedure like
swap2 below can be written.

swap2 (x, y) {

x := x+y;

y := x-y;

x := x-y;

}

Applying swap2 to a pair of integer variables exchanges their values. However,
executing swap2 (z, z) with call-by-reference sets the variable z to zero be-
cause the parameters x and y are bound to the same location (they are aliases).
Call-by-value-result does not suffer this problem, it leaves z unchanged.

The answer to the last question determines how seriously a language imple-
ments call-by-value. Most languages adopt the stance that locations are just

69

passed as parameters without further copying taking place. In effect, this means
that dynamic data structures are always passed by reference.

The following operational semantics specifies a language which extends IMP
with procedures with call-by-reference parameter passing. It restricts actual
parameters to variables. For simplicity, procedures are toplevel, only.

p ::= d . . . d; s
d ::= f(v . . . v)s
s ::= f(v . . . v) | . . .
e ::= v | . . .

The semantics of the language is defined by four judgements. A program com-
putes just a final store and environment.

⊢ p ❀ σ, ρ

The meaning of a statement is a transformation on stores and environments.
The statement may depend on the set of procedure definitions in the program.

d∗;σ, ρ ⊢ s ❀ σ′, ρ′

The meaning of an expression is split into the meaning of l-values (in this lan-
guages, only variables) and the meaning of expressions. The l-value of a variable
is a location. It only depends on the environment.

ρ ⊢l v →֒ l

The meaning of an expression depends on the environment and on the store. It
does not change either of these.

σ, ρ ⊢ e →֒ y

We define the inference rules bottom-up, starting with the l-value rule. It
just reads from the environment.

l = ρ(v)
ρ ⊢l v →֒ l

The only interesting rule for expressions is the variable rule. It relies on the
l-value rule to access the location of a variable.

ρ ⊢l v →֒ l y = σ(l)
σ, ρ ⊢ v →֒ y

The new rule for statements is the one for procedure calls. One impor-
tant detail is that the final environment after executing the body of the called
procedure is discarded.

f(v1 . . . vn)s ∈ d∗ (∀1 ≤ i ≤ n) ρ ⊢l v
′
i →֒ li d∗;σ, ρ[vi 7→ li] ⊢ s ❀ σ′, ρ′

d∗;σ, ρ ⊢ f(v′1, . . . , v
′
n) ❀ σ′, ρ

Finally, the rule for programs initializes the list of definitions to the one from
the program, the store and the environment start empty.

d∗; ∅, ∅ ⊢ s ❀ σ, ρ
⊢ d∗; s ❀ σ, ρ

70

11.4 Types for IMP

Adding types to IMP in the style of the simply-typed lambda calculus is straight-
forward, only the treatment of references requires the addition of an extra set of
type assumptions about locations. We will set up the type system in such a way
that it guarantees two things. First, that variables are used in a type consis-
tent way. Second, that only defined variables are ever accessed. The following
type-related items are involved:

• types of expressions and variables
Type ∋ τ ::= α | Int | Ref τ

• types of procedures
PType ∋ π ::= τ × · · · × τ → 0

• Γ : Var→ Type type assumptions for variables

• Φ : PVar→ PType mapping from procedure names to procedure types

For each judgment of the operational semantics there is a corresponding typing
judgment.

• For expressions, the usual judgment Γ ⊢ e : τ applies.

• For l-values, a similar judgment Γ ⊢l l : τ is constructed.

• For statements, the judgment Γ ⊢ s ⇒ Γ only needs to check the con-
sistency of the assumptions with their use in the expressions and in the
assignment statement. The outgoing Γ is not strictly required. It enforces
the declare-before use policy for variables.

Γ ⊢ var v ⇒ Γ, v : τ

Γ(v) = τ Γ ⊢ e : τ
Γ ⊢ v:=e⇒ Γ

Γ ⊢ skip⇒ Γ

Γ0 ⊢ s1 ⇒ Γ1 Γ1 ⊢ s2 ⇒ Γ2

Γ0 ⊢ s1;s2 ⇒ Γ2

Γ ⊢ e : Int Γ ⊢ s1 ⇒ Γ1 Γ ⊢ s2 ⇒ Γ2

Γ ⊢ if e then s1 else s2 ⇒ Γ

Γ ⊢ e : Int Γ ⊢ s⇒ Γ′

Γ ⊢ while e do s⇒ Γ

Since a variable declaration does not contain a type in the syntax, the typing
rule nondeterministically “guesses” a type. The program typechecks if this guess
turns out to be consistent with the rest of the program.

71

At an assignment, the type of the variable should be equal to the type of
the expression on the right-hand side. The rules for the skip statement and the
sequence statement are straightforward.

The rules for the conditional and the while statement both allow for local
variable definitions inside the branches or the body of the loop which are for-
gotten in the context. The operational semantics is more permissive, but in the
case of the while, it is impossible to guarantee that the body is executed at least
once (so that the variable is defined). For the conditional, the condition could
be weakened to just ask for identical typing assumptions after both branches or
even to filter out the intersection of the final typing assumptions.

For this subset of the language and any extension with further primitive
types, we can prove the following result.

Lemma 36 Suppose that ∅ ⊢ s ⇒ Γ. If µ = SJsK(Inr λx.In0(wrong)) then
µ = Inr σ ∈ Inr (Store) and (∀v ∈ dom(Γ)) σ(v) ∈ T JΓ(v)K.

The next block of rules deals with the typing of references.

Γ ⊢ e : Ref τ
Γ ⊢ get e : τ

Γ ⊢ e : τ Γ(v) = Ref τ
Γ ⊢ v:=new e⇒ Γ

Γ ⊢ e1 : Ref τ Γ ⊢ e2 : τ
Γ ⊢ set e1 e2 ⇒ Γ

In the presence of references, the type system does not guarantee that values of
type Ref τ are properly initialized (although it could be changed to do so). For
illustration, just consider the statement sequence

var x;

var p;

if e then p := new 0 else skip;

x := get p;

Depending on the value of e, variable p either holds a defined location (that
contains the value 0) or it holds a null pointer. The latter case yields an execu-
tion error at get p (or at least undefined behavior). Hence, a type soundness
result would have to be appropriately weakened.

This behavior can be improved by integrating statements with expressions
and returning variables to their mathematical status, that is, by regarding state-
ments as expressions that return a fixed value () (unit or void). This unification
of the operational semantics and the typing rules is left as an exercise.

The last block of rules considers procedures. Their types are collected in a
special typing assumption, Φ. Again, due to the lack of procedure declarations,
procedure types are nondeterministically guessed and only verified for consis-
tency. Since procedure calls are statements, the rules for expressions remain as

72

before. The judgment for statements is extended with Φ which is collected from
the list of procedure definitions in an auxiliary judgment and does not change
thereafter. Hence, Φ is just passed down through all statement rules, which now
have the form Φ; Γ ⊢ s⇒ Γ.

Φ(f) = τ1 × · · · × τn → 0 (∀1 ≤ i ≤ n) Γ ⊢ v′i : τi
Φ;Γ ⊢ f(v′1, . . . , v

′
n)⇒ Γ

While the last rule checks a use of a procedure call in a statement, another
rule is required to check a procedure declaration.

Φ(f) = τ1 × · · · × τn → 0 Φ; {vi : τi} ⊢ s⇒ Γ′

Φ ⊢ f(v1, . . . , vn)s

Finally, the rule that links all parts of a program together ensures that
declarations and uses are mutually consistent.

(∀1 ≤ i ≤ n) Φ ⊢ di Φ;Γ ⊢ s⇒ Γ′

Φ;Γ ⊢ d1 . . . dn; s⇒ Γ′

In most cases, this rule will be applied to the empty typing environment
for variables. However, if certain variables were used to provide input to the
program, then this practice would have to be reflected in the environment Γ
accordingly.

73

12 Objects and Classes

The material in this section is derived from Chapter 5 of EOPL (Essentials of
Programming Languages by Friedman, Wand, and Haynes, second edition).

The main contribution of object-oriented programming is the packaging of
local state together with operations that operate on this local state into an
object. Ideally, the local state is encapsulated so that information about it is
only available through the operations.

From a pragmatic point of view, an object is nothing but a record where
some fields are designated to hold the state of the object (the attributes or in-
stance variables) and the remaining fields hold the operations (the methods).
Each operation is a function that (implicitly) takes the object itself as a param-
eter. Object-oriented languages provide syntactic support, method invocation,
to apply the method functions in the right way.

Languages with this functionality are called object-based. The classical exam-
ple is the language Self, the main contemporary contender is JavaScript. Such
languages provide a cloning facility to create new objects from existing ones. A
typical programming idiom is the creation of a trait or prototype object, which
is equipped with the intended set of operations. The clone operation is then
used to create objects from the prototypes as they are needed.

Class-based object-oriented language provide classes as a means of specifying
the fields and methods of many similar objects. Usually, each class comes with
a facility to generate objects (instances of the class) according to the class’s
specification.

Many class-based languages have a concept of inheritance, whereby a class
may import field and method specifications from another class. The idea is that
inheritance can model a hierarchical refinement of object behaviors. If class B
inherits from class A, then B is a subclass of A and A is a superclass of B. Some
languages (e.g., C++) also support heterarchies of classes, that is, a class may
inherit from more than one superclass (multiple inheritance).

A further important feature of object-oriented languages is polymorphism
(the quality or state of being able to assume different forms, according to
Merriam-Webster). In the context of object-orientation, it is taken to mean
subtype or inclusion polymorphism, that is, an object an object of a class B can
play the role of an object of any superclass of B. However, other equally useful
forms of polymorphism exist.

12.1 Syntax

We will define a class-based object-oriented language with single inheritance
(i.e., each class has at most one superclass). In the syntax, every class definition
will refer to a superclass. The superclass may be the predefined class object.

74

Let c ∈ CVar range over class names, m ∈ MVar over method names.

p ::= d∗; e
d ::= class c extends c f m∗

f ::= fields v∗

m ::= method m(v∗) e
e ::= let v = e in e | v := e | new c(e∗) | e.m(e∗) | . . .

Again, for simplicity, statements are integrated into expressions. The sequence
statement e1;e2 can be expressed by let v = e1 in e2 where v /∈ FV(e2).
The absence of a special field access notation is deliberate, only methods are
accessible from outside the object itself.

A program is executed by evaluating its body expression. The new c(. . .)
expression creates a new object of class c and runs its initialization method with
the supplied parameters. The expression e.m(e∗) is a method call. It expects
e to evaluate to an object (reference) and then invokes the method m of the
object with the supplied parameters. Among the expressions are constants, the
usual arithmetic operations, and conditionals.

75

12.2 Examples

Taken from EOPL.

12.2.1 Terminology example

• i and j are also called member or instance variables

• Methods are are also called member functions. A methods declaration
consists of a method name, method parameters, and a method body.

• Method names are sometimes called messages.

• Methods may be mutually recursive.

class c1 extends object

fields i, j

method new (x) {

i := x;

j := 0-x

}

method countup (d) {

i := i+d;

j := j-d;

}

method getstate () {

list (i, j)

}

let t1 = 0

t2 = 0

o1 = new c1 (3)

in t1 := o1.getstate ();

o1.countup (2);

t2 := o1.getstate ();

list (t1, t2)

76

12.2.2 Dynamic dispatch

class interior_node extends object

fields left, right

method new (l, r) {

left := l;

right := r

}

method sum () {

left.sum() + right.sum()

}

class leaf_node extends object

fields value

method new (v) {

value := v

}

method sum () {

value

}

let o1 = new interior_node (

new interior_node (

new leaf_node (3),

new leaf_node (4)),

new leaf_node (5))

in o1.sum ()

77

12.2.3 Inheritance

class point extends object

fields x, y

method new (initx, inity) {

x := initx;

y := inity

}

method move (dx, dy) {

x := x+dx;

y := y+dy

}

method get_location () {

list (x, y)

}

class colorpoint extends point

fields color

method set_color (c) {

color := c

}

method get_color () {

color

}

let p = new point (3, 4)

cp = new colorpoint (10, 20)

in p.move (3, 4);

cp.set_color (87);

cp.move (10, 20);

list (p.get_location (),

cp.get_location (),

cp.get_color())

78

12.2.4 Shadowing of instance variables

A field in a class shadows a field of the same name in any superclass.

12.2.5 Method override

A method declared in a class overrides a previous method definition for the
same method name in any superclass. This may be more refined by taking into
account the arity of the method and the argument types if they are available.

12.2.6 Static vs. dynamic method dispatch

Interpretation of o2.m2 ()?

class c1 extends object

method new () { 1 }

method m1 () { 1 }

method m2 () { self.m1 () }

class c2 extends c1

method m1 () { 2 }

let o1 = new c1 ()

o2 = new c2 ()

in list (o1.m1 (),

o1.m2 (),

o2.m1 (),

o2.m2 ())

79

12.2.7 The super object

The object super refers to the part of the object that corresponds to the super-
class of the class in which the current method is defined.

class c1 extends object

method new () { 1 }

method m1 () { self.m2 () }

method m2 () { 13 }

class c2 extends c1

method m1 () { 22 }

method m2 () { 23 }

method m3 () { super.m1 () }

class c3 extends c2

method m1 () { 32 }

method m2 () { 33 }

let o3 = new c3 ()

in o3.m3()

80

12.3 Recursive Record Semantics

Denotationally, object-orientation with inheritance can be modeled using records
and fixpoints. This classical encoding is described in detail in: W. Cook and J.
Palsberg. A denotational semantics of inheritance and its correctness. Inf. &
Comp., 114(2):329–350, 1995.

The underlying idea is to model an object as a record of methods. For
example, objects of the Point class

class Point extends object

fields x, y

method distFrom0 () {

sqrt (square (self.x) + square (self.y))

}

method closer (p) {

self.distFrom0 () < p.distFrom0 ()

}

are represented by a record of type

{x : Int, y : Int, distFrom0 : ()→ Int, closer : point→ Bool}

with generator function

MakePoint(initx, inity) =
λself.{ x = initx,

y = inity,
distFrom0 = λ().sqrt(square(self.x) + square(self.y)),
closer = λp.self.distFrom0() < p.distFrom0()

}

Creation of a new Point object boils down to taking the fixpoint of the result
of the MakePoint function:

new Point(x, y) = fix (MakePoint(x, y))

Using inheritance, the Point class may be extended to a Circle class.

class Circle extends Point

fields radius

method distFrom0 () {

max (super.distFrom0 () - self.radius, 0)

}

Modeling inheritance requires the definition of a wrapper function for Circle.
A wrapper parameterizes the construction of the underlying record over self
and super, the record modeling the superclass.

WrapCircle(r) = λself.λsuper.
{ radius = r,

distFrom0 = λ().max(super.distFrom0()− self.radius, 0)
}

81

Wrappers are combined with generators using wrapper application ✄ to
yield a new generator.

w ✄ g = λself.(λr.w(self)(r) ⊕ r)(g(self))

Hence, the generator function for Circle objects is

MakeCircle(initx, inity, r) = WrapCircle(r) ✄ MakePoint(initx, inity)

with objects constructed by

new Circle(x, y, r) = fix (MakeCircle(x, y, r))

Cook and Palsberg show that this denotational model is equivalent to an
informally described operational model.

82

12.4 Operational Semantics

The operational semantics generally binds variables to locations. Each location
in the store contains either an integer or an object. Each object is represented
by a triple, where the first component assigns field names to locations, the
second assigns method names to method closures (a list of formal variables
and an expression), and the third refers to the superclass part of the object.
Hence, each object may be considered as a list of records, where each list entry
corresponds to one step in the inheritance chain. The root class object is
represented by the value 0.

Obj = Fields×Methods× Loc

Fields = Var →֒ Loc

Methods = MVar →֒ (Var∗ × Exp)
Storable = Z+ Loc+ Obj

Store = Loc →֒ Storable

Env = Var →֒ Loc

Val = Z+ Loc

The judgment ρ, σ ⊢ e ❀ y, σ′ for evaluating an expression maps an envi-
ronment, a store, and an expression to a location and a final store. The location
contains the value of the expression. Evaluation of expressions relies on two
auxiliary judgments for creating new objects and for method calls.

ρ, σ ⊢ e1 ❀ y1, σ
′ ρ[v 7→ l], σ′[l 7→ y1] ⊢ e2 ❀ y2, σ

′′ l /∈ dom(σ′)
ρ, σ ⊢ let v = e1 in e2 ❀ y2, σ

′′

ρ, σ ⊢ e ❀ y, σ′ ρ(v) = l l ∈ dom(σ′)
ρ, σ ⊢ v:=e ❀ y, σ′[l 7→ y]

σ, c ⊢n l, σ′ ρ, σ′, l ⊢m new(e1, . . . , en) ❀ y, σ′′

ρ, σ ⊢ new c(e1, . . . , en) ❀ l, σ′′

ρ, σ ⊢ e ❀ l, σ′ ρ, σ′, l ⊢m m(e1, . . . , en) ❀ y, σ′′

ρ, σ ⊢ e.m(e1, . . . , en) ❀ y, σ′′

Object construction takes an initial state and a class and returns a pointer
to the constructed object and the final state. It binds the variable self in the

83

bottommost record to refer to the entire object.

l /∈ dom(σ) σ[l 7→ 0], c, l, l ⊢′n σ′′

σ, c ⊢n l, σ′′

σ, object, ls, l ⊢′n σ[l 7→ ([self 7→ ls], ∅, 0)]

class c extends c′ fields v1 . . . vn m∗

l′ /∈ dom(σ) σ[l′ 7→ 0], c′, ls, l
′ ⊢′n σ′

ρ = [v1 7→ l1, . . . , vn 7→ ln] (i 6= j ⇒ li 6= lj) li /∈ dom(σ′)
σ′′ = σ′[l1 7→ 0, . . . , ln 7→ 0]
σ, c, ls, l ⊢

′
n σ′′[l 7→ (ρ,m∗, l′)]

Method invocation takes an object reference and a method call besides en-
vironment, store, and the self pointer.

(∀1 ≤ i ≤ n) ρ, σi−1 ⊢ ei ❀ yi, σi σn, l ⊢′m m(y1, . . . , yn) ❀ y, σ′

ρ, σ0, l ⊢m m(e1, . . . , en) ❀ y, σ′

σ(l) = (ρ, µ, l′) µ(m) = (v1 . . . vn, e)
σ′ = σ[li 7→ yi] li /∈ dom(σ) (i 6= j ⇒ li 6= lj)

σ ⊢e l′ ❀ ρ′ (ρ⊕ ρ′)[vi 7→ li, super 7→ l′], σ′ ⊢ e ❀ y, σ′′

σ, l ⊢′m m(y1, . . . , yn) ❀ y, σ′′

σ(l) = (ρ, µ, l′) m /∈ dom(µ)
σ, l′ ⊢′m m(y1, . . . , yn) ❀ y, σ′′

σ, l ⊢′m m(y1, . . . , yn) ❀ y, σ′′

σ, 0 ⊢′m m(y1, . . . , yn) ❀ message not understood

The method environment is constructed by composing the environments
bottom-up from the object chain. Environment composition ρ1 ⊕ ρ2 is defined
by

(ρ1 ⊕ ρ2)(v) = ρ2(v) v ∈ dom(ρ2)
ρ1(v) otherwise

The composition operation is iterated to compute the environment in which a
method call executes.

σ(l) = (ρ′, µ′, l′) σ ⊢e l′ ❀ ρ
σ ⊢e l ❀ ρ⊕ ρ′

σ ⊢e 0 ❀ { }

84

12.5 Types

Apart from runtime errors caused by illegal uses of primitive operations, the
operational semantics flags only one kind of error, “message not understood”.
As usual, the job of a type system is to avoid those errors.

As we have seen in the recursive record semantics, objects may be modeled
with records. However, simple types for records lack the flexibility to model the
polymorphism due to inheritance properly. The missing ingredient is subtyping,
which is expressed as a binary relation <: on types (in fact, a partial ordering
relation).

The basic intuition of subtyping is that whenever A <: B (read: A is a
subtype of B or B is a supertype of A) then a value of type A can be used
wherever a value of type B is expected. In a type system, this intuition is
formalized by the subsumption rule (which relies on the subtyping relation being
formalized by a judgement Γ ⊢ τ <: τ ′):

Γ ⊢ e : τ Γ ⊢ τ <: τ ′

Γ ⊢ e : τ ′

A naive interpretation of subtyping is inclusion of the types’ carrier sets. For
example, each subrange type [m..n] is a subtype of the type of natural numbers
N. Subtyping may also involve coercion (an injective function that maps values
of the subtype to values of the supertype), for example, when considering the
types of integers Z as a subtype of the set of fractions Q.

For object-oriented programming, it is more relevant to consider subtyping
for record types. Some languages (e.g., OCaml) define a dual notion for variant
types, but this is not a common feature. The key notion for records is width
subtyping: a record with more fields can be used wherever a record with fewer
fields is expected. If a language supports breadth subtyping, too, then the types
of the shared fields may be refined to subtypes.

Here is the inference rule for width subtyping

i 6= j ⇒ li 6= lj
Γ ⊢ [l1 : τ1, . . . , ln : τn] <: [l1 : τ1, . . . , ln : τn, ln+1 : τn+1, . . . , ln+m : τn+m]

Breadth subtyping is specified by the following rule.

i 6= j ⇒ li 6= lj Γ ⊢ τ1 <: τ ′1 . . . Γ ⊢ τn <: τ ′n
Γ ⊢ [l1 : τ1, . . . , ln : τn] <: [l1 : τ ′1, . . . , ln : τ ′n]

Usually, both, breadth and width subtyping, apply in combination.
In the presence of further type constructors (pairs, sums, functions, etc),

we must extend the subtyping relation to types formed with these constructors.
The extension is straightforward with pairs and sums, which are considered
componentwise, but there is a twist for functions.

Consider a function like the distFrom0 method above:

distFrom0 : {x : Real, y : Real} → PosReal

distFrom0 = λp.sqrt(square(p.x) + square(p.y))

85

Clearly, distFrom0 is applicable to any record that provides fields x and y of type
Real assuming square : Real -> Real. Here are some suitable arguments:

p1 : {x : Real, y : Real}

p2 : {x : Real, y : Real, z : Real}

p3 : {x : Int, y : Int}

The last value is only suitable if Int <: Real.
Finding a subtype for the function type involves the question which functions

can be substituted for distFrom0 without violating the typing of an application
of the function. It would be unsound to substitute a function that expects an
additional field, say, z, because this would make application to p1 and p3 above
fail. It would also be unsound to substitute a function returning a supertype
of PosReal because this might violate the constraints of a context that expects
only positive numbers.

In summary, the point is that a function f may be substituted for distFrom0
if it makes less demands on the argument and guarantees (the same or) more
constraints on the result. In short, to form a subtype of a function type, the new
argument type must be a supertype of the original argument type whereas the
new result type must be a subtype of the original result type. This reversal of
the subtyping relation in the argument position of the function type constructor
is called contravariance. In the result position, the orientation of the subtyping
relation remains same, this is called covariance.

Formally, subtyping for function types is governed by the following inference
rule.

Γ ⊢ τ ′1 <: τ1 Γ ⊢ τ2 <: τ ′2
Γ ⊢ τ1 → τ2 <: τ ′1 → τ ′2

Type inference is possible for some systems with records, but it is a highly
non-trivial task. All uses of unification in the algorithm for inferring simple
types must be replaced by an enforcement of the subtyping relation because the
subsumption rule may be used at any point in a type derivation. Depending on
the particular features of the system, the subtyping relation may be undecidable.
Some systems abstract the record types to class types (a class type is a set of
class names), which are generated from the class definitions, to facilitate type
inference.

86

13 On Understanding Types, Data Abstraction,

and Polymorphism

Excerpted from: Luca Cardelli, Peter Wegner. On Understanding Types, Data
Abstraction, and Polymorphism. ACM Computing Surveys, 17(4):471–522,
1985.

Kinds of Polymorphism

• Monomorphic languages:

– All functions and procedures have unique type.

– All values and variables of one and only type.

– Comparable to Pascal or C type systems.

• Polymorphic languages:

– Values and variables may have more than one type.

– Polymorphic functions admit operands of more than one type.

• Universal polymorphism:

– Function works uniformly on range of types.

– Parametric and inclusion polymorphism.

• Ad-hoc polymorphism:

– Function works on several unrelated types.

– Overloading and coercion.

Universal Polymorphism

• Parametric polymorphism:

– Actual type is a function of type parameters.

– Each application of polymorphic function substitutes the type pa-
rameters.

– Generic functions:

∗ ”Same” work is done for arguments of many types.

∗ Length function over lists.

• Inclusion polymorphism:

– Value belongs to several types related by inclusion relation.

– Object-oriented type systems.

Ad-hoc Polymorphism

• Overloading

87

– Same name denotes different functions.

– Context decides which function is denoted by particular occurence of
a name.

– Preprocessing may eliminate overloading by giving different names
to different functions.

• Coercion

– Type conversions convert an argument to a type expected by a func-
tion.

– May be provided statically at compile time.

– May be determined dynamically by run-time tests.

• Only apparent polymorphism

– Operators/functions only have one type.

– Only syntax ”pretends” polymorphism.

Overloading and Coercion

• Distinction may be blurred:

3 + 4

3.0 + 4

3 + 4.0

3.0 + 4.0

• Different explanations possible:

– + has four overloaded meanings.

– + has two overloaded meanings (integer and real addition) and inte-
gers may be coerced to reals.

– + is real addition and integers are always coerced to reals.

• Overloading and/or coercion or both!

Preview of Fun

• lambda-calculus based language

– Basis is first-order typed lambda-calculus.

– Enriched by second-order features for modeling polymorphism and
object-oriented languages.

• First-order types

– Bool, Int, Real, String.

88

• Various forms of type quantifiers

Type ::= · · · | QuantifiedType
QuantifiedType ::= ∀A.Type | ∃A.Type | ∀A ⊆ Type.Type | ∃A ⊆ Type.Type

• Modeling of advanced type systems:

– Universal quantification: parameterized types.

– Existential quantifiers: abstract data types.

– Bounded quantification: type inheritance.

The Typed lambda-Calculus

• Extension of Untyped lambda-Calculus

– Every variable must be explicitly typed when introduced as typed
variable

– Result types can be deduced from function body.

• Examples

– value succ = fun(x:Int) x+1

– value twice = fun(f: Int -> Int) fun(y:Int) f(f(y))

• Type declarations:

– type IntPair = Int x Int

– type IntFun = Int -> Int

• Type annotations/assertions:

– (3, 4): IntPair

– value intPair: IntPair = (3, 4)

• Local variables

– let a = 3 in a+1

– let a: Int = 3 in a+1

13.1 Universal Quantification

• Typed lambda-calculus describes monomorphic functions.

– Not sufficient to describe functions that behave the same way for
argumentes of different types.

• Introduce types as parameters:

89

value id = all[a] fun(x:a) x

id[Int](3)

id : forall a. a -> a

id[Int] : Int -> Int

• May omit type information:

value id = fun(x) x

id(3)

– Type inference (type reconstruction) reintroduces all[a], a, and
[Int]

• Polymorphic types:

type GenericId = forall a. a -> a

id: GenericId

-- examples

value inst = fun(f: forall a. a -> a) (f[Int], f[Bool])

value intid: Int -> Int = fst(inst(id))

value boolid: Bool -> Bool = snd(inst(id))

Polymorphic Functions

• First version of polymorphic twice:

value twice1 = all[t] fun(f: forall a. a -> a)

fun(x: t) f[t](f[t](x))

twice1[Int](id)(3) -- legal.

twice1[Int](succ) -- illegal!

• Second version of polymorphic twice:

value twice2 = all[t] fun(f: t -> t) fun(x: t) f(f(x))

twice2[Int](succ) -- legal.

twice2[Int](id[Int])(3) -- legal.

• Both versions different in nature of f:

– In twice1, f is a polymorphic function of type forall a: a -> a.

– In twice2, f is a monomorphic function of type t -> t (for some
instantiation of t)

Parametric Types

90

• Type definitions with similar structure:

type BoolPair = Bool x Bool

type IntPair = Int x Int

• Use parametric definition:

type Pair[T] = T x T

type PairOfBool = Pair[Bool]

type PairOfInt = Pair[Int]

• Type operators are not types:

type A[T] = T -> T

type B = forall T. T -> T

– Different notions!

Recursive Definitions

• Recursively defined type operators:

rec type List[Item] =

[nil: Unit

,cons: {head: Item, tail: List[Item]}]

• Constructing values of recursive types:

value nil: forall Item.List[Item] = all[Item]. [nil = ()]

value intNil: List[Int] = nil[Int]

value cons:

forall Item. (Item x List[Intem]) -> List[Item] =

all[Item].

fun(h Item, t: List[Item])

[cons = {head = h, tail = t}]

13.2 Existential Quantification

• Existential type quantification:

– p: exists a. t(a)

– For some type cfta, p has type t(a)

• Examples:

– (3, 4): exists a. a x a

– (3, 4): exists a. a

91

– A value can satisfy different existential types!

• Sample existential types:

– type Top = exists a. a (type of any value)

– exists a. exists b. a x b (type of any pair)

• Particularly useful: “existential packaging”

– x: exists a. a x (a -> Int)

– (snd(x))(fst(x))

– (3, succ) has this type

– ([1,2,3], length) has this type

Information Hiding

• Abstract types:

– Unknown representation type.

– Packaged with operations that may be applied to representation.

• Another example:

– x: exists a. {const: a, op: a -> Int}

– x.op(x.const)

• Restrict use of abstract types:

– Simplify type checking.

– value p: exists a. a x (a -> Int)

= pack[a = Int in a x (a -> Int)](3, succ)

– Value p is a package

– Type a x (a -> Int) is the interface.

– Binding a=Int is the type representation.

• General form:

– pack [a = typerep in interface](contents)

Use of Packages

• Package must be opened before use:

– value p = pack[a = Int in a x (a -> Int)]

(3, succ)

open p as x in (snd(x))(fst(x))

92

– value p = pack[a = Int in {arg: a, op: a -> Int}]

(3, succ)

open p as x in x.op(x.arg)

• Reference to hidden type: open p as x[b] in ...fun(y:b) (snd(x))(y)

...

Packages and Abstract Data Types
Modeling of Ada type system:

• Records with function components model Ada packages.

• Existential quantification models Ada type abstraction.

type Point = Real x Real

type Point1 =

{makepoint: (Real x Real) -> Point,

x_coord: Point x Real,

y_coord: Point x Real}

value point1: Point1 =

{makepoint = fun(x:Real, y:Real)(x, y),

x_coord = fun(p:Point) fst(p),

y_coord = fun(p:Point) snd(p)}

Ada Packages

package point1 is

function makepoint(x: Real, y: Real) return Point;

function x_coord(P: Point) return Real;

function y_coord(P: Point) return Real;

end point1;

package body point1 is

function makepoint(x: Real, y: Real) return Point;

-- implementation of makepoint

function x_coord(P: Point) return Real;

-- implementation of x_coord

function y_coord(P: Point) return Real;

-- implementation of y_coord

end point1;

Hidden Data Structures

• Ada:

package body localpoint is

point: Point;

93

procedure makePoint(x, y: Real); ...

function x_coord return Real; ...

function y_coord return Real; ...

end localpoint

• Fun:

value localpoint =

let p: Point = ref((0,0)) in

{makepoint = fun(x: Real, y: Real) p := (x, y),

x_coord = fun() fst(p)

y_coord = fun() snd(p)}

• First-order information hiding: Use let construct to restrict scoping at
value level (hide record components).

Hidden Data Types
Second-order information hiding: Use existential quantification to restrict

scoping at type level (hide type representation).

package point2

type Point is private;

function makepoint(x: Real, y: Real) return Point;

...

private

-- hidden local definition of type Point

end point2;

type Point2 =

exists Point.

{makepoint: (Real x Real) -> Point,

...}

type Point2WRT[Point] =

{makepoint: (Real x Real) -> Point,

...}

value point2: Point2 = pack[Point = (Real x Real) in

Point2WRT[Point]] point1

Combining Universal and Existential Quantification

• Universal quantification: generic types.

• Existential quantification: abstract data types.

• Combination: parametric data abstractions.

94

The following signature of list and array operations is used in the examples.

nil: forall a. List[a]

cons: forall a. (a x List[a]) -> List[a]

hd: forall a. List[a] -> a

tl: forall a. List[a] -> List[a]

null: forall a. List[a] -> Bool

array: forall a. Int -> Array[a]

index: forall a. (Array[a] x Int) -> a

update: forall a. (Array[a] x Int x a) -> Unit

Concrete Stacks

type IntListStack =

{emptyStack: List[Int],

push: (Int x List[Int]) -> List[Int]

pop: List[Int] -> List[Int],

top:List[Int] -> Int}

value intListStack: IntListStack =

{emptyStack = nil[Int],

push = fun(a: Int, s: List[Int]) cons[Int](a,s),

pop = fun(s: List[Int]) tl[Int](s)

top = fun(s: List[Int]) hd[Int](s)}

type IntArrayStack =

{emptyStack: (Array[Int] x Int),

push: (Int x (Array[Int] x Int)) -> (Array[Int] x Int),

pop: (Array[Int] x Int) -> (Array[Int] x Int),

top: (Array[Int] x Int) -> Int}

value intArrayStack: IntArrayStack =

{emptyStack = (Array[Int](100), -1) ...}

Generic Element Types

type GenericListStack =

forall Item.

{emptyStack: List[Item],

push: (Item x List[Item]) -> List[Item]

pop: List[Item] -> List[Item],

top: List[Item] -> Item}

value genericListStack: GenericListStack =

all[Item]

{emptyStack = nil[Item],

95

push = fun(a: Item, s: List[Item]) cons[Item](a,s),

pop = fun(s: List[Item]) tl[Item](s)

top = fun(s: List[Item]) hd[Item](s)}

type GenericArrayStack =

...

value genericArrayStack: GenericArrayStack =

...

Hiding the Representation

type GenericStack =

forall Item. exists Stack. GenericStackWRT[Item][Stack]

type GenericStackWRT[Item][Stack] =

{emptyStack: Stack,

push: (Item x Stack) -> Stack

pop: Stack -> Stack,

top: Stack -> Item}

value listStackPackage: GenericStack =

all[Item]

pack[Stack = List[Item]

in GenericStackWRT[Item][Stack]]

genericListStack[Item]

value useStack =

fun(stackPackage: GenericStack)

open stackPackage[Int] as p[stackRep]

in p.top(p.push(3, p.emptystack))

useStack(listStackPackage)

Quantification and Modules

• Modules

– Abstract data type packaged with operators.

– Can import other (known) modules.

– Can be parameterized with (unknown) modules.

• Parametric modules

– Functions over existential types.

Example

96

type PointWRT[PointRep] =

{mkPoint: (Real x Real) -> PointRep,

x-coord: PointRep -> Real,

y-coord: PointRep -> Real}

type Point = exists PointRep. PointWRT[PointRep]

value cartesianPointOps =

{mkpoint = fun(x: Real, y: Real) (x,y),

x-coord = fun(p: Real x Real) fst(p),

y-coord = fun(p: Real x Real) snd(p)}

value cartesianPointPackage: Point =

pack[PointRep = Real x Real

in PointWRT[PointRep]]

(cartesianPointOps)

value polarPointPackage: Point =

pack[PointRep = Real x Real in PointWRT[PointRep]]

{mkpoint = fun(x: Real, y: Real) ...,

x-coord = fun(p: Real x Real) ...,

y-coord = fun(p: Real x Real) ...}

Parametric Modules

type ExtendedPointWRT[PointRep] =

PointWRT[PointRep] &

{add: (PointRep x PointRep) -> PointRep}

type ExtendedPoint =

exists PointRep. ExtendedPointWRT[PointRep]

value extendPointPackage =

fun(pointPackage: Point)

open pointPackage as p[PointRep] in

pack[PointRep’ = PointRep in ExtendedPointWRT[PointRep’]]

p & {add = fun(a: PointRep, b: PointRep)

p.mkpoint(p.x-coord(a)+p.x-coord(b),

p.y-coord(a)+p.x-coord(b))}

value extendedCartesianPointPackage =

extendPointPackage(cartesianPointPackage)

A Circle Package

type CircleWRT2[CircleRep, PointRep] =

97

{pointPackage: PointWRT[PointRep],

mkcircle: (PointRep x Real) -> CircleRep,

center: CircleRep -> PointRep, ...}

type CircleWRT1[PointRep] =

exists CircleRep. CircleWRT2[CircleRep, PointRep]

type Circle =

exists PointRep. CircleWRT1[PointRep]

value circleModule: CircleModule =

all[PointRep]

fun(p: PointWRT[PointRep])

pack[CircleRep = PointRep x Real

in CircleWRT2[CircleRep,PointRep]]

{pointPackage = p,

mkcircle = fun(m: PointRep, r: Real)(m, r) ...}

value cartesianCirclePackage =

open CartesianPointPackage as p[Rep] in

pack[PointRep = Rep in CircleWRT1[PointRep]]

circleModule[Rep](p)

open cartesianCirclePackage as c0[PointRep] in

open c0 as c[CircleRep] in

...c.mkcircle(c.pointPackage.mkpoint(3, 4), 5) ...

A Rectangle Package

type RectWRT2[RectRep, PointRep] =

{pointPackage: PointWRT[PointRep],

mkrect: (PointRep x PointRep) -> RectRep, ...}

type RectWRT1[PointRep] =

exists RectRep. RectWRT2[RectRep, PointRep]

type Rect =

exists PointRep. RectWRT1[PointRep]

type RectModule = forall PointRep.

PointWRT[PointRep] -> RectWRT1[PointRep]

value rectModule: RectModule =

all[PointRep]

fun(p: PointWRT[PointRep])

pack[PointRep’ = PointRep

98

in RectWRT1[PointRep’]]

{pointPackage = p,

mkrect = fun(tl: PointRep, br: PointRep) ...}

A Figures Package

type FiguresWRT3[RectRep, CircleRep, PointRep] -

{circlePackage: CircleWRT[CircleRep, PointRep],

rectPackage: RectWRT[RectRep, PointRep],

boundingRect: CircleRep -> RectRep}

type FIguresWRT1[PointRep] =

exists RectRep. exists CircleRep.

FigureWRT3[RectRep, CircleRep, PointRep]

type Figures =

exists PointRep. FIgureWRT1[PointRep]

type FiguresModule = forall PointRep.

PointWRT[PointRep] -> FiguresWRT1[PointRep]

value figuresModule: FIguresModule =

all[PointRep]

fun(p: PointWRT[PointRep])

pack[PointRep’ = PointRep

in FiguresWRT1[PointRep]]

open circleModule[PointRep](p) as c[CircleRep] in

open rectModule[PointRep](p) as r[RectRep] in

{circlePackage = c, ...}

13.3 Bounded Quantification

• Type inclusion:

– Type A is included in type B when all values of A are also values of
B.

– Inclusion relation on subranges, records, variants, function, univer-
sally and existentially quantified types.

• Integer subrange type n..m

– n..m <: n’..m’ iff n′ ≤ n ∧ m ≤ m′

– value f = fun(x: 2..5) x+1

f: 2..5 -> 3..6

f(3)

value g = fun(y: 3..4) f(y)

99

• Function type

– s -> t <: s’ -> t’ iff s’ <: s and t <: t’

– Function of type 3..7 -> 7..9 can be also considered as function of
type 4..6 -> 6..10

Bounded Quantification and Subtyping

• Mix subtyping and polymorphism.

value f0 = fun(x: {one: Int}) x.one

f0({one = 3, two = true})

value f = all[a] fun(x: {one: a}) x.one

f[Int]({one = 3, two = true})

• Constraint all[a <: T] e

value g0 = all[a <: {one: Int}] fun(x: a) x.one

g0[{one:Int, two:Bool}]({one=3, two=true})

• Two forms of inclusion constraints:

– In f0, implicit by function parameters.

– In g0, explicit by bounded quantification.

– Type expressions:

g0: forall a <: {one: Int}. a -> Int

– Type abstraction:

value g = all[b] all[a <: {one: b}] fun(x:a)x:one

g[Int][({one:Int,two:Bool})]({one=3,...})

Object Oriented Programming

type Point = {x: Int, y: Int}

value moveX0 =

fun(p: Point, dx: Int) p.x := p.x + dx; p

value moveX =

all[P <: Point] fun(p:P, dx: Int) p.x := p.x + dx; p

type Tile = {x: Int, y: Int, hor: Int, ver: Int}

moveX[Tile]({x = 0, y = 0, hor - 1, ver = 1}, 1).hor

• Result of moveX is same as argument type.

• moveX can be applied to objects of (yet) unknown type.

100

Bounded Existential Quantification and Partial Abstraction

• Bounding existential quantifiers:

– exists a <: t. t’

– exists a. t is short for exists a <: Top. t

• Partially abstract types:

– a is abstract.

– We know a is subtype of t.

– a is not more abstract than t.

• Modified packing construct:

pack [a <= t = t’ in t"] e

Points and Tiles

type Tile = exists P. exists T <= P. TileWRT2[P, T]

type TileWRT2[P, T] =

{mktile: (Int x Int x Int x Int) -> T,

origin: T -> P,

hor: T -> Int,

ver: T -> Int}

type TileWRT[P] = exists T <= P. TileWRT2[P, T]

type Tile = exists P. TileWRT[P]

type PointRep = {x: Int, y: Int}

type TileRep = {x: Int, y: Int, hor: Int, ver: Int}

pack [P = PointRep in TileWRT[P]]

pack [T <= PointRep = TileRep in TileWRT2[P, T]]

{mktile = fun(x:Int, y: Int, hor: Int, ver: Int)

{x=x, y-y, hor=hor, ver=ver},

origin = fun(t: TileRep) t,

hor = fun(t: TileRep) t.hor,

ver = fun(t: TileRep) t.ver}

fun(tilePack: Tile)

open tilePack as t[pointRep][tileRep]

let f = fun(p: pointRep) ...

in f(t.tile(0, 0, 1, 1))

101

13.4 Summary

• Three main principles

– Universal type quantification (polymorphism).

– Existential type quantification (abstraction).

– Bounded type quantification (subtyping).

• Resulting programs may be statically type-checked.

– Bottom-construction of types.

– More sophisticated type inference possible (ML).

• More general type systems.

– Type-checking typically not decidable any more.

– Dependent types (Martin-Löf).

– Calculus of constructions (Coquand and Huet)..

102

14 Typed Object-Oriented Programming

See Martin Abadi and Luca Cardelli, A Theory of Objects, Springer Verlag,
1996, for background material.

14.1 Object Types

Subtyping is a relation between (object) types, having to do with keeping track
of the messages that objects can accept. Inheritance is a relation between
classes, having to do with the superclass-subclass relation and with method
reuse. The usual connection between inheritance and subtyping is the following:
a subclass generates objects whose type is a subtype of the objects generated
by a superclass.

Initially, object-oriented languages confused classes with object types, and
therefore ended up blurring the distinction between implementations (classes)
and interfaces (object types), and between inheritance (code sharing) and sub-
typing (interface sharing). Recent object-oriented languages are designed to
make these distinctions and to take advantage of them.

The main idea is to separate the definition of the object types that are
to be used as interfaces for using them from the classes that implement those
types. The object type only fixes the protocol used with the objects, not their
implementation.

For example, there might be two interfaces that are subtypes of each other,
but their implementations can be completely unrelated. Similarly, inheritance
may be employed to reuse code from different classes, but the type of the newly
formed class need not be a subtype of the type of any superclass.

The former concept is present in Java in the form of interfaces. The latter
concept is—to a limited degree—obtainable with nested classes.

14.2 Separating Subtyping from Subclassing

Since the subtyping relation no longer derives from the inheritance relation,
other ways of defining it must be considered.

1. Structural subtyping derives the subtyping relation from the structure of
the types. A disadvantage of structural subtyping is accidental matching.

2. Nominal subtyping is based on an (arbitrary) ordering on named types.
The ordering must be compatible with the underlying structure and it is
tedious to specify precisely.

With structural subtyping, object types (typed records) support multiple
subtyping. Since a subclass can only extend the interface of an existing class,
it follows that the object type of an object of a subclass is always a subtype of
the superclass’s object type. That is: subclassing implies subtyping.

103

14.3 Bounded Type Parameters

Consider two object type definitions

ObjectType Person {

...

method eat (food: Food)

}

ObjectType Vegetarian {

...

method eat (food: Vegetables)

}

where Vegetables <: Food. The intention is that a vegetarian is a special
person. However, the Vegetarian type is not a subtype of the Person type
because the food occurs contravariantly in the type of eat: Food -> Unit <:

Vegetables -> Unit!
One solution is to parameterize the two object types over the kind of food

and bound the food accordingly.

ObjectOperator PersonEating[F <: Food] {

...

method eat (food: F)

}

ObjectOperator VegetarianEating[F <: Vegetables] {

...

method eat (food: F)

}

• VegetarianEating[Vegetables] is a well-formed type

• VegetarianEating[Food] is not well-formed

There is no direct relation between PersonEating and VegetarianEating,
however, it holds that

forall F <: Vegetables. VegetarianEating[F] <: PersonEating[F]

Hence, we obtain that

Vegetarian = VegetarianEating[Vegetables] <: PersonEating[Vegetables]

Another possibility is a model with bounded existential quantification or
bounded abstract types. The idea here is to provide the food edible by the
object in a field with a bounded parameterized type.

104

ObjectType Person {

type F <: Food

field lunch: F

method eat (food: F)

}

ObjectType Vegetarian {

type F <: Vegetables

field lunch: F

method eat (food: F)

}

An object can only be constructed by providing it with suitable food. After
construction, the specifics about the food are forgotten. It is only ensured that
eating the food originally provided is OK.

With this construction, it holds that Vegetarian <: Person because eat
can only be applied to the value of the lunch field. However, this subsumption
would be void in the presence of imperative field updates because it would be
possible to first subsume a Vegetarian to a Person, and then update the lunch
to Meatballs, say.

14.4 Subclassing without Subtyping

• inheritance is not subtyping

• Motivation: admit contravariant occurences of self in method argument;
binary methods

An example:

ObjectType Max {

field n: Int

method max(other: Max): Max

}

ObjectType MinMax {

field n: Int

method max(other: MinMax): MinMax

method min(other: MinMax): MinMax

}

These object types are defined recursively!
Now, we want to define two classes corresponding to types Max and MinMax.

class maxClass {

field n: Int = 0

method max(other: Self): Self {

if (self.n > other.n) {

105

return self

} else {

return other

}

}

}

class minMaxClass extends maxClass {

method min(other: Self): Self {

if (self.n < other.n) {

return self

} else {

return other

}

}

}

• min and max are binary methods, with other being a contravariant argu-
ment of type self.

• minMaxClass inherits n and min from maxClass.

• objects of maxClass have type Max

• objects of minMaxClass have type MinMax

MinMax is not a subtype of Max:

class minMaxClass’ extends minMaxClass {

override max(other: Self): Self {

if (other.min(self) == other) {

return self

} else {

return other

}

}

}

Objects of this class have type m1 : MinMax. Assuming that MinMax <: Max,
subsumption yields m1 : Max. The type of max allows it to apply m1.max to
another object m2 : Max as in m1.max(m2). However, as m2 does not neces-
sarily have a min method, the call other.min may fail. This contradicts the
assumption.

14.5 Object Protocols

When subclassing does not lead to a subtype, there might still be a useful
relation between the types induced by a class and a subclass. However, this
relation does not have the subsumption property.

106

We would like to capture the fact that any object that supports the operators
from MinMax also supports the operators from Max. We’ll call that suite of
operators the protocol of the objects. The protocols may be formalized using
type operators.

ObjectOperator MaxProtocol[X] {

field n: Int

method max(other: X): X

}

ObjectOperator MinMaxProtocol[X] {

field n: Int

method max(other: X): X

method min(other: X): X

}

In general, any recursive object type can be converted into its associated
protocol by abstracting over the recursive occurrences. The original type is
then the fixpoint of the protocol operator.

For the example in question,

Max = fix X. MaxProtocol[X]

MinMax = fix X. MinMaxProtocol[X]

There are two possible formal relationships between MinMax and Max. First

MinMax <: MaxProtocol[MinMax]

Second, we can define a subtyping relation between type operators:

P <* P’ iff for all T. P[T] <: P’[T]

With this definition

MinMaxProtocol <* MaxProtocol

Either one may be the basis for a subprotocol relation:

1. F -bounded parameterization

S subprotocol T if S <: T-Protocol[S]

Then we might define object types as follows

ObjectOperator P1[X <: MaxProtocol[X]] {...}

P1[MinMax] is a legal instantiation

2. higher-order bounded parameterization

S subprotocol T if S-Protocol <* T-Protocol

107

with object types defined as follows

ObjectOperator P2[P <* MaxProtocol] {...}

P2[MinMaxProtocol] is a legal instantiation

One way of avoiding the complications of working with type operators, types
can be equipped with a matching relation <#. The matching relation can be de-
fined through either of the subprotocol definitions above. In any case, match-
ing does not enjoy a subsumption property, as we demonstrated above. However,
it can be used for bounded parameterization:

ObjectOperator P3[X <# Max] { ... }

With this declaration, the instantiation P3[MinMax] is legal.

15 An Interpretation of Objects and Object Types

(see paper by Abadi, Cardelli, and Viswanathan in POPL’96)

15.1 Object Calculus

Syntax
e ::= x variables
| [li = ς(xi)ei]

n
i=1 objects

| e.lj method invocation
| e.lj ⇐ ς(x)e method update

Reduction rules; let a = [li = ς(xi)ei]
n
i=1

a.lj −→ ej [xj 7→ a]

a.lj ⇐ ς(x)e −→ [l1 = ς(x1)e1, . . . lj = ς(x)e, . . .]

In an operational semantics with weak reduction, objects serve as values.
Syntax of types

A,B ::= Top supertype of all types
| [li : Bi]

n
i=1 object type

108

Typing rules

Γ(x) = A
Γ ⊢ x : A

(∀1 ≤ j ≤ n) Γ, xj : [li : Bi]
n
i=1 ⊢ ej : Bj

Γ ⊢ [li = ς(xi)ei]
n
i=1 : [li : Bi]

n
i=1

Γ ⊢ e : [li : Bi]
n
i=1

Γ ⊢ e.lj : Bj

Γ ⊢ e : [li : Bi]
n
i=1 Γ, x : [l1 : B1, . . . lj : Bj , . . .] ⊢ e′ : Bj

Γ ⊢ e.lj ⇐ ς(x)e′ : [li : Bi]
n
i=1

Subtyping (breadth only)

15.2 Main Result

There is a typing preserving embedding of the (explicitly typed) ob-
ject calculus into (essentially) Fun, the polymorphic lambda calculus.

Encoding of Object-types into Fun-types

Top∗ = Top
[li : Bi]

n
i=1

∗
= µ(Y)∃(X <: Y) { lseli : X → B∗

i ,

lupdi : (X → B∗
i)→ X,

self : X
}

• B∗
i occurs both, covariantly and contravariantly

Idea of the term encoding

Je.ljK = JeK.lselj (JeK.self)

Je.lj ⇐ ς(x)e′K = JeK.lupdj (λ(x)Je′K)

The creation of objects is more complicated. Due to the presence of method
update it is not sufficient to just define a recursive record because it would lead
to a premature binding of self.

J[li = ς(xi)ei]
n
i=1K = letrec create(f1) . . . (fn) = { lseli = fi,

lupdi = λ(g)create(f1) . . . (g) . . . (fn),
self = create(f1) . . . (fn)}

in create(λ(x1)Je1K) . . . (λ(xn)JenK)

It remains to wrap this correctly into the typed language. First, we define

109

some abbreviations. Let A = [li : Bi]
n
i=1, then

CA[X] = { lseli : X → B∗
i ,

lupdi : (X → B∗
i)→ X,

self : X
}

Ll,B = µ(Y)∃(X <: Y){lsel : X → B∗, self : X}

The typed translation

JxK = x

J[li = ς(xi : A)ei]
n
i=1K = letrec create(f1 : A∗ → B∗

1) . . . (fn : A∗ → B∗
1) : A

∗ =
pack [X <: A∗ = A∗ in CA[X]]

{ lseli = fi,

lupdi = λ(g : A∗ → B∗
i)create(f1) . . . (g) . . . (fn),

self = create(f1) . . . (fn)}
in create(λ(x1 : A∗)Je1K) . . . (λ(xn : A∗)JenK)

Je.lK = open JeK as X <: Ll,B, x : {lsel : X → B∗, self : X} in x.lsel(x.self)

Je.lj ⇐ ς(x)e′K = open JeK as X <: A∗, y : CA[X] in (y.lupd)(λ(x : X)Je′K)

Summary of technical results (informal)

1. If Γ ⊢ e : A in the object calculus, then Γ∗ ⊢ JeK : A∗ in the polymorphic
lambda calculus.

2. If Γ ⊢ e : A and e −→ e′ in the object calculus, then JeK −→∗ Je′K in the
polymorphic lambda calculus.

3. If ∅ ⊢ e : A, then e terminates iff JeK terminates.

4. If ∅ ⊢ e : A and ∅ ⊢ e′ : A, then JeK = Je′K : A∗ implies e = e′ : A.

Further results:

1. imperative variant of calculus and translation; requires an additional field
clone : {} → X

2. variance annotations determine if a method is invoke-only, update-only,
or both

3. self types: just use the X from ∃X <: Y in record type.

110

16 Logic Programming

Further backgroundmaterial may be found in “Computing with Logic” by David
Maier and David S. Warren, Benjamin Cummings, 1988.

The idea of logic programming is to turn knowledge and facts expressed in
terms of formulae in a logic into a program. The most successful logic program-
ming language, Prolog, relies on predicate logic as its underlying theory. A logic
program might also be considered as a means of specifying a relation. Hence, a
typical program execution lists tuples that satisfy the program relation.

16.1 First-order Predicate Logic

The language of first-order predicate logic is defined by the following grammar.

t ::= terms
x variables

| c constants
| f(t, . . . , t) f ∈ function symbols

A ::= formulae
p(t, . . . , t) p ∈ relation symbols

| true

| false

| ¬A | A ∧ A | A ∨ A | A→ A | A↔ A
| (∃x)A | (∀x)A

Formulae of the form p(t1, . . . , tn) are atoms. A literal is an atom (positive
literal) or a negated atom (negative literal). A clause is a formula of the form

∀xL1 ∨ · · · ∨ Lm

where each Li is a literal and x are all variables occurring in L1, . . . , Lm. Each
clause can be written in clausal form

A1, . . . , Ak ← B1, . . . , Bn

where A1, . . . , Ak are the positive literals among the Li and B1, . . . , Bn are the
negative literals stripped of the negation. The A are the conclusions and the B
are the premises of the clause.

Example:
(∀x) (∀y) p(x) ∨ ¬A ∨ ¬q(y) ∨B

written in clausal form
p(x), B ← A, q(y)

A clause with only one conclusion is a definite clause or Horn clause. If there
is no conclusion, the clause is a goal.

Definition 53 A logic program is a finite nonempty set of definite clauses.

A Horn clause A← B1, . . . , Bn can be read in two different ways. The proce-
dural interpretation is: “to solve A you must solve B1, . . . , Bn.” The declarative
interpretation is: “B1, . . . , Bn imply A.”

111

16.2 Procedural Interpretation—SLD-resolution

We start by considering a logic program where all clauses are variable-free
(ground). Let

N =← G1, . . . , Gm

be a ground goal and C = Gi ← B1, . . . , Bn be a program clause. Then

N ′ =← G1, . . . , Gi−1, B1, . . . , Bn, Gi, . . . , Gm

is the resolvent of N and C with the property that N ′∧C ⇒ N . A derivation is
a sequence of resolvents. If a derivation ends with the empty clause, it is called
a refutation of the original goal.

In general, variables may be present in goals as well as in a program. Hence,
the process of finding a resolvent may require that a goal literal and the con-
clusion of a program clause are unified. Let again,

N =← G1, . . . , Gm

be a goal, C = A← B1, . . . , Bn be a program clause, and θ be the most general
unifier (mgu) of A and Gi. Then

N ′ =← θ(G1, . . . , Gi−1, B1, . . . , Bn, Gi, . . . , Gm)

is a resolvent of N and C with mgu θ.
An SLD-derivation of goal N with respect to a program is a maximal se-

quence N0, N1, . . . of goals with N = N0, a sequence C0, C1, . . . of program
clauses, and a sequnce θ0, θ1, . . . of substitutions such that

• Ni+1 is a resolvent of Ni and Ci with mgu θi,

• Ci has no variable in common with N0, C0, C1,

An SLD-derivation is an SLD-refutation if there is an i such that Ni is empty.
Otherwise, the derivation is either failed (if it is finite) or infinite.

A goal may have arbitrary many SLD-derivations, depending on the choice
of the subgoal and the program rule for each resolvent. Hence, the set of SLD-
derivations is often depicted as a tree where each node represents a goal and
each edge represents a choice (annotated with Ci and θi).

A typical example for computing with relations is in studying family rela-
tions.

male (kronos).

female (rhea).

female (gaia).

male (zeus). parent (kronos, zeus). parent (rhea, zeus).

female (hera). parent (kronos, hera). parent (rhea, hera).

male (poseidon). parent (kronos, poseidon). parent (rhea, poseidon).

female (demeter). parent (kronos, demeter). parent (rhea, demeter).

112

female (methis).

female (athene). parent (zeus, athene). parent (methis, athene).

female (persephone). parent (zeus, persephone). parent (demeter, persephone).

male (zagreus). parent (zeus, zagreus). parent (persephone, zagreus).

female (leto).

female (artemis). parent (zeus, artemis). parent (leto, artemis).

male (apollon). parent (zeus, apollon). parent (leto, apollon).

male (ares). parent (zeus, ares). parent (hera, ares).

person (X) :- male (X).

person (X) :- female (X).

father (X, Y) :- parent (X, Y), male (X).

mother (X, Y) :- parent (X, Y), female (X).

sibling (X, Y) :- father (A, X), mother (B, X), father (A, Y), mother (B, Y).

half_sibling (X, Y) :- parent (A, X), parent (A, Y).

grandfather (X, Y) :- father (X, A), parent (A, Y).

:- grandfather (zeus, zagreus).

% 1. X1 -> zeus, Y1 -> zagreus

:- father (zeus, A1), parent (A1, zagreus).

% 2a. A1 -> artemis

:- parent (zeus, artemis), parent (artemis, zagreus) .

% 3a. parent (zeus, artemis)

:- parent (artemis, zagreus) .

% not refutable

% 2b. A1 -> persephone

:- parent (zeus, persephone), parent (persephone, zagreus).

% 3b. parent (zeus, persephone)

:- parent (persephone, zagreus)

% 4b. parent (persephone, zagreus)

:-

% 1, 2b, 3b, 4b is an SLD-refutation!

% One solution: X1 -> zeus, Y1 -> zagreus, A1 -> persephone

Another example.

path (X, Z) :- arc (X, Y), path (Y, Z).

path (X, X).

arc (b, c).

Build an SLD-tree for path (X,c).
A Prolog interpreter traverses an SLD-tree depth-first starting from the goal

input by the programmer. It always chooses the first subgoal and then tries
to resolve it with the rule heads in program ordering. If the interpreter has no
more rules available to resolve a subgoal, then it backtracks to the last successful
resolvent, undoes it, and attempts the remaining program clauses.

This method is sound but incomplete since depth-first search may run into
an infinite branch of the SLD-tree and thus never reach an existing refutation.

113

Practical implementations contain further ways of controlling backtracking.
The best-known of these is the cut-operator !. As an example, consider the rule

r (X) :- f (X), !, g (X).

r (X) :- h (X).

Once the predicate f (X) succeeds, the cut instructs the Prolog interpreter to
commit to the current resolution of r (...) by the rule containing the cut.
In other words, even if g (X) fails, the second rule with body h (X) is never
considered. Instead, the resolvent for r (...) is considered failed and the
failure is propagated upwards. The same happens on failure in a later goal,
after successfully processing g (X).

Thus the behavior of the above code fragment is comparable to the function

r (x) = if if (x) then g (x) else h (x)

The cut operator often improves efficiency and termination behavior by
shortcutting parts of the search space and by avoiding repeated enumeration
of results. For example, here is a predicate that tests membership in a set
represented by a list (potentially with repetitions).

myelem (X, [X|T]) :- ! .

myelem (X, [Y|T]) :- myelem (X, T).

Without the cut in the first clause, the predicate myelem would suffer some
problems.

1. myelem’ (a, [a,a,a]) would succeed three times.

2. myelem’ (a, X) would not terminate.

In addition, arithmetic operators are usually built in as well as several non-
logical predicates, for example, to assert and retract rules from the program.

16.3 Semantics

An interpretation I for a first-order language consists of

• a nonempty set D, the domain of I,

• a constant assignment: c 7→ cI ∈ D,

• a function assignment: f (n) 7→ fI ∈ Dn → D,

• a relation assignment: r(n) 7→ rI ⊆ P(Dn).

A variable assignment σ is a function from variables to D. Every variable
assignment σ can be extended uniquely to a function σ̂ from terms to D:

• σ̂(x) = σ(x)

• σ̂(c) = cI

114

• σ̂(f(t1, . . . , tn)) = fI(σ̂(t1), . . . , σ̂(tn))

A formula A is true under variable assignment σ iff I |=σ A holds. The latter
and its converse, I 6|=σ A, are defined inductively by

• I |=σ r(t1, . . . , tn) iff (σ̂(t1), . . . , σ̂(tn)) ∈ pI

• I |=σ true

• I |=σ ¬A iff I 6|=σ A

• I |=σ A ∨B iff I |=σ A or I |=σ B

• I |=σ (∀x)A iff I |=σ[x 7→d] A, for all d ∈ D

• I 6|=σ r(t1, . . . , tn) iff (σ̂(t1), . . . , σ̂(tn)) /∈ pI

• I 6|=σ false

• I 6|=σ ¬A iff I |=σ A

• I 6|=σ A ∨B iff I 6|=σ A and I 6|=σ B

• I 6|=σ (∀x)A iff I 6|=σ[x 7→d] A, for some d ∈ D

A formula A is true in interpretation I if I |=σ A, for all variable assignments
σ.

If T is a set of formulae, then I is a model for T if every formula in T is
true in I. If T has a model, then T is satisfiable (consistent). Otherwise T is
unsatisfiable (inconsistent). If every interpretation is a model for T , then T is
valid.

A set of formulae T semantically implies T ′ (T |= T ′) if every model of T is
also a model of T ′.

Thus armed, it is easy to see that SLD-resolution is sound. For a goal
N =← B1, . . . , Bn, let Ñ = B1 ∧ · · · ∧Bn.

Lemma 37 If M is a resolvent of N and clause C with mgu θ, then C |= M̃ →
θ(Ñ).

Theorem 12 Let P be a logic program and N a goal with an SLD-refutation
with substitutions θ0, . . . , θn. Then θn · · · θ1θ0(Ñ) is a semantic consequence of
P .

16.4 Herbrand Models

Each logic program has a natural model, the Herbrand model. The Herbrand
universe UP is the set of all ground terms of P . The Herbrand base BP is the
set of all ground atoms.

Definition 54 The Herbrand interpretation for P has

115

• UP as its domain

• the constant assignment c 7→ c ∈ UP

• the function assignment f (n) 7→ λ(t1, . . . , tn)f(t1, . . . , tn)

• each n-ary relation symbol is assigned an n-ary relation over UP

The last item (and hence the entire Herbrand interpretation) is uniquely deter-
mined by a subset I ⊆ BP as follows:

r(n) 7→ {(t1, . . . , tn) | r(t1, . . . , rn) ∈ I}

The immediate consequence operator TP maps a Herbrand interpretation to
another Herbrand interpretation as follows:

Definition 55 Let A be a ground atom and I be a Herbrand interpretation.
A ∈ TP (I) iff B ← B1, . . . , Bn is a program clause, θ is a substitution such that
A = θ(B), and I |= θ(B1 ∧ · · · ∧Bn).

Lemma 38 Let P be a program and I a Herbrand interpretation. I is a model
of P iff TP (I) ⊆ I (I is a pre-fixpoint of TP).

The set of subsets of the Herbrand base for a program is a complete lattice
with operations set union and set intersection. The operator TP is monotonic
with respect to set inclusion. Hence, the following definition:

T (0)(I) = I T (i+1)(I) = T (T (i)(I)) T (ω)(I) =
⋃

i∈N

T (i)(I)

Theorem 13 Let P be a program. Then P has a Herbrand model MP such
that

• MP is the least Herbrand model of P

• MP is the least pre-fixpoint of TP

• MP is the least fixpoint of TP

• MP = T
(ω)
P (∅)

NB, this theorem suggests another complete way of computing a goal by
constructing the least Herbrand model bottom-up.

116

17 Continuations

Continuations are a functional-programming based concept for expressing ex-
ceptions, backtracking, coroutines, and multi-threading. The main idea is to
adopt a programming style which places some restrictions on user-defined func-
tions:

• all functions are tail-recursive

• each function has one or more continuation parameters, each of which is
a function

• instead of returning a value, each function invokes a continuation and
passes the value as a parameter.

A continuation function is an abstraction of the rest of the computation. Since
it is manifest in the program, it can be manipulated, stored, and modified like
any other value. This gives rise to a number of interesting manipulations of
control, i.e., higher-order control structures.

17.1 Motivation: Exceptions

Consider a function that multiplies the elements of a tree of numbers.

product xt =

if null xt

then 1

else product (left xt) * value xt * product (right xt)

If xt contains 0 then product xt is also 0. However, the function still performs
two multiplications multiplications for each inner node of the tree to compute
the result. Here is an attempt to improve on the performance of product.

product1 xt =

if null xt

then 1

else if value xt == 0

then 0

else product (left xt) * value xt * product (right xt)

While product1 performs much fewer multiplications on trees containing 0, we
would like to perform no multiplications at all in such a case.

product2 xt =

prod xt (\x -> x)

where

prod xt c =

if null xt

then c 1

117

else if value xt == 0

then c 0

else prod (left xt) (\l -> prod (right xt) (\r -> c (l * r * value xt)))

The function prod is written in continuation-passing style and the argument
c is the continuation. Each function call (to prod and c) is tail-recursive and
results are returned by passing them to the respective continuation. However,
the function still behaves exactly like product1!

Next, we exploit presence of continuations. By just returning 0 instead
passing it to the continuation, we make the function call prod xt (\x -> x)

(and hence product3 xt) return immediately with result 0:

product3 xt =

prod xt (\x -> x)

where

prod xt c =

if null xt

then c 1

else if value xt == 0

then 0

else prod (left xt) (\l -> prod (right xt) (\r -> c (l * r * value xt)))

This break of continuation-passing style corresponds to the use of a so-called
control operator

This programming style is useful but clumsy, so the Scheme programming
language provides a primitive call-with-current-continuation which we
abbreviate with call/cc. It enables us to rewrite product2 without using
continuation-passing style.

product3 xt =

call/cc (\ return ->

let prod xt =

if null xt

then 1

else if value xt == 0

then return 0

else prod (left xt) * value xt * prod (right xt)

in prod xt

We’ll look later at how call/cc may be implemented.

17.2 Motivation: Backtracking

Consider the subset sum problem which is a specialized version of the knapsack
problem: You are given a positive integer C (the weight that you can carry) and
a list of positive integers (the weights of items you want to carry). Is there a
subset of the items the weights of which add up to C? (This problem is known
to be NP-complete.) An implementation in pseudo code might look like this:

118

subsetsum target items =

let work path target items =

if target == 0

then RESULT path

else if null items

then FAIL

else if (head items) <= target

then TRY (work (head items : path) (target - head items) (tail items))

ANDTHEN work path target (tail items)

else work path target (tail items)

in work [] target items

This function uses a number of primitives to express backtracking. RESULT an-
nounces a result. FAIL declares the current invokation to fail. TRY ...ANDTHEN

... searches for a result in the first argument and then in the second. (Similar
operators might be used in a Prolog interpreter.)

The function subsetsum can be implemented easily using continuations. The
idea is to pass two continuations to each function call, one for the successful case
and another for the failure case.

subsetsum1 target items =

let work path target items succ fail =

if target == 0

then succ path

else if null items

then fail ()

else let hi = head items in

if hi <= target

then work (hi : path) (target - hi) (tail items) succ (\ () ->

work path target (tail items) succ fail)

else work path target (tail items) succ fail

in work [] target items (\ x -> True) (\ () -> False)

The use of the success continuation in this example seems rather trivial. In
fact, replacing succ path with just True would not change the behavior of the
program. However, the success continuation may be used to compose a list of
all results as follows.

subsetsum1 target items =

let work path target items succ fail =

if target == 0

then succ path fail

else if null items

then fail ()

else let hi = head items in

if hi <= target

then work (hi : path) (target - hi) (tail items) succ (\ () ->

119

work path target (tail items) succ fail)

else work path target (tail items) succ fail

let results = ref []

in work [] target items (\ path fail -> results := path : !results;

fail ())

(\ () -> return !results)

17.3 Motivation: Coroutines

Coroutines are program components like subroutines. They differ from the latter
in that they do not impose a caller-callee hierarchy on the components. Instead
coroutines come as a set of rountines that exist on equal footing. Exactly one of
them is active at each time while the others are sleeping. They do not call one
another but the active coroutine can yield control (inclusive parameter passing)
to another coroutine, which resumes execution from where that coroutine last
yielded control. Passing of control suspends the yielding coroutine and activates
the other. The active coroutine may also choose to terminate, in which case the
entire set terminates. Coroutines are well suited for implementing programming
patterns such as cooperative tasks, iterators, infinite lists, and pipes.

Here is an example where coroutines may be used. Consider to functions, one
that reads an input stream and performs a simple run-length decompressions,
and one that gobbles characters into tokens (part of a scanner).

decompress () {

while ((c = getchar()) != EOF) {

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--)

emit(c);

} else

emit(c);

}

emit(EOF);

}

scanner () {

while ((c = getchar()) != EOF) {

if (isalpha(c)) {

do {

add_to_token(c);

c = getchar();

} while (isalpha(c));

got_token(WORD);

}

add_to_token(c);

120

got_token(PUNCT);

}

}

Both pieces of code are very simple and easy to understand. But now suppose
we wish to construct a scanner that works on compressed documents. The usual
approach is to rewrite one of the functions so that it can call (can be called)
from the other: either rewrite the scanner so that it takes one character at a
time (at the expense of keeping local state across invocations of the scanner) or
rewrite the decompressor so that it returns one character at the time (keeping
local state across invocations of the decompressor). However, using coroutines
we might write the following code.

scanner (COROUTINE producer) {

while ((c = yield(producer)) != EOF) {

if (isalpha(c)) {

do {

add_to_token(c);

c = yield(producer);

} while (isalpha(c));

got_token(WORD);

}

add_to_token(c);

got_token(PUNCT);

}

}

The decompression function is changed to perform the job of the driver:

decompress (COROUTINE consumer) {

while ((c = getchar ()) != EOF) {

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--)

yield(consumer, c);

} else

yield(consumer, c);

}

yield(consumer, EOF);

}

Those two pieces of functionality need just a bit of external glue to be put
together.

run (COROUTINE producer, COROUTINE consumer) {

do {

c = yield (producer);

121

yield (consumer, c);

} while (c != EOF);

}

...

COROUTINE producer = make_coroutine (decompress);

COROUTINE consumer = make_coroutine (scanner);

COROUTINE driver = make_coroutine (run);

driver (producer, consumer);

...

Coroutines may be readily implemented using call/cc. The basic idea is to
represent each coroutine state by the coroutine’s current continuation.

running = ref (ref Nothing)

make_coroutine f =

let mycont = ref Nothing

in \ x ->

running := Just mycont

case cont of

Nothing -> f x

Just ff -> ff x

yield g y =

call/cc (\ resume ->

!running := Just resume;

g y)

Exercise: Can you reduce the implementation of yield to a function call,
e.g., yield g y = g y?

17.4 Motivation: Threads

Threads are program components that may be executed concurrently and that
run on a shared state. Threads come in several variants

• native threads vs. simulated threads. The former rely on the operating
system and may be executed on different processors. The latter simulate
concurrency inside of a sequential process.

• preemptive vs. cooperative. In each thread implementation, a sched-
uler determines which thread becomes active next. With preemption, the
scheduler runs at regular time intervals. It suspends the currently active
thread and selects another thread from a pool of suspended threads to
run in the next time slice. With cooperative threading, a thread remains
active until it explicitly relinquishes control or until it gets blocked due to
an I/O operation.

122

Having call/cc as a primitive enables a simple user-level implementation of
cooperative threads. In contrast to a coroutine, a thread does not explicitly
yield control to another thread but leaves that decision to the scheduler. In
addition, threads communicate exclusively via shared state. They cannot receive
parameters or return values while they are running.

A typical thread interface offers the following functionality.

spawn :: (Unit -> Unit) -> Thread

yield :: Unit -> Unit

terminate :: Unit -> Unit

currentThread = NULL

runQueue = emptyQueue

spawn f =

enqueue (runQueue, makeThread f)

makeThread f =

{ cont =

\ () ->

f (); terminate ()

...

}

terminate () =

scheduleThread (dequeue (runQueue))

scheduleThread (thread) =

currentThread = thread;

currentThread.cont ()

yield () =

call/cc (\ myself ->

currentThread.cont = myself;

enqueue (runQueue, currentThread);

scheduleThread (dequeue (runQueue));

)

To implement a pair of cooperating functions like scanner and decompress
with threads requires communication via shared state. Before looking at means
to achieve that, we first look at an implementation of call/cc.

17.5 Implementing first-class continuations

The easiest way of implementing first-class continuations is via an interpreter.
Let’s consider the following language.

e ::= x | λx.e | e e | 0 | e+e | if e e e | call/cc

123

The interpretation is inspired by denotational semantics.

y ∈ Val = Z+ (Val→ Comp)
κ ∈ Cont = Val→ Answer

Comp = Cont→ Answer

ρ ∈ Env = Var→ Val

E : Exp→ Env→ Comp

EJxKρκ = κ(ρ(x))
EJλx.eKρκ = κ(λy.EJeKρ[x 7→ y])
EJe1 e2Kρκ = EJe1Kρ(λy1.EJe2Kρ(λy2.y1 y2 κ))
EJ0Kρκ = κ(0)
EJe1+e2Kρκ = EJe1Kρ(λy1.EJe2Kρ(λy2.y1+y2))
EJif e1 e2 e2Kρκ = EJe1Kρ(λy.if y (EJe2Kρκ) (EJe3Kρκ))
EJcall/ccKρκ = κ(λf.λκ.f(λy.λκ′.κy))

Notice that the interpreter is written in continuation-passing style. Moreover, it
is written in such a way that the underlying program is evaluated using call-by-
value, regardless of the evaluation-strategy used for evaluating the interpreter.

Alternatively, we may transform a program with call/cc into one without
by applying a CPS transformation. The first published formal study of such
a transformation is due to Plotkin. However, his specification makes it hard
to prove its properties. Hence, we’ll also consider a version due to Danvy and
Filinski which simplifies the proofs a lot.

124

18 The CPS Transformation

Continuations have also become important in compiler construction so that CPS
warrants a closer look and more systematic study. Indeed, understanding CPS
is a prerequisite to many newer research papers in compiler construction. At
the heart of CPS is the CPS transformation which transforms a term in the
lambda calculus into one using explicit continuations.

The presentation here follows the work by Danvy and Filinski [1].
For expository purposes, we will revert to the pure lambda calculus. All

results will carry over smoothly to its applied variants. However, the notation
of application (formerly e1 e2) will change to @e1 e2.

18.1 Classical CPS transformation

The central idea of the classical CPS transformation is by Plotkin and Fischer [2,
3]. Recall that the interpreter used abstractions to represent continuations. The
CPS transformation does the same.

Definition 56 (Fischer/Plotkin Call-by-Value CPS Transformation) It
is a function J K : E → E:

JxK := λk.@ k x

Jλx.eK := λk.@ k (λx.JeK)

J@ e1 e2K := λk.@ Je1K (λv1.@ Je2K (λv2.@ (@ v1 v2) k)) (v1, v2 fresh)

✷

The Fischer/Plotkin CPS transformation is simple enough, and the following
statement states its correctness with respect to call-by-value evaluation:

Theorem 14 (Simulation) Let e be a lambda term. Let furthermore evalv be
call-by-value evaluation.

evalv(e) = evalv(@ JeK(λx.x))

✷

Moreover, the CPS transformation has a pleasant side effect:

Theorem 15 (Indifference) Let e be a lambda term. Let furthermore evalv
be call-by-value evaluation and evaln be call-by-name evaluation.

evaln(@JeK(λx.x)) = evalv(@JeK(λx.x))

✷

The consequence of the indifference property is that the CPS-transformed term
is indifferent to the evaluation strategy: Call-by-name and call-by-value will
produce the same result on a CPS term. Consequently, the CPS interpreter is
now independent of the evaluation strategy of the metalanguage, which brings
it a significant step closer to being definitional.

125

18.2 Avoiding administrative β redexes

Unfortunately, the Fischer/Plotkin CPS transformation is not suitable for direct
application in realistic compilers: it produces humungous result terms. For
example, the CPS version of @(λx.x)(@y y) is this:

λk.@(λk.@ k(λx.λk.@k x))
(λm.@(λk.@(λk.@k y)(λm.@(λk.@k y)(λn.@(@mn) k)))(λn.@(@m n) k))

This term contains a large number of β redexes—in addition to the beta redex
already present in the original term. Reducing those administrative redexes
leads to the following, much more acceptable term:

λk.@(y y) (λa.@(@(λx.λk.(@k x)) a) (λa.@k a))

Hence, for practical intents and purposes, the Fischer/Plotkin CPS transforma-
tion needs to be accompanied by a post-reducer which removes the β reductions
introduced by the vanilla transformation. This approach has the disadvantage
that it still constructs the intermediate, large CPS term only to replace it im-
mediately by something much smaller. It is much more desirable to compute
the final result directly without large intermediate terms.

The method to achieve this “on-the-fly” post-reduction is to classify the ab-
stractions and applications on the right-hand sides of the transformation into
those which will be part of an administrative β redex and those which will not.
With the straightforward Fischer/Plotkin transformation, this is not possible—
some abstractions and applications sometimes do take part in adminstrative
redexes, and sometimes do not. However, it is possible to perform η expan-
sion on the right-hand sides in a few, select instances, and then perform the
classification.

The new transformation resulting from this has annotations on each λ and
each @ indicating its classification: λ is for static abstractions that are part
of administrative redexes (and therefore do not show up in the result term),
and λ is for dynamic abstractions which definitely are part of the transformed
term. Analogously, @ denotes a dynamic application, and @ a static one. The
reformulation of the transformation is due to Danvy and Filinski [1], hence:

Definition 57 (Danvy/Filinski CPS Transformation) Let e be a lambda
term. The Danvy/Filinski CPS Transformation is a function J K : E → (E →
E)→ E:

JxK := λκ.@κ x

Jλx.eK := λκ.@κ(λx.λk.(@JeK(λv.@k v))

J@e1 e2K := λκ.@Je1K (λv1.@Je2K (λv2.@(@v1 v2) (λa.@κ a)))

✷

Note that, in this definition, κ stands for a continuation at transformation time;
only k ever appears in the output of the transformation

The corresponding correctness statement is this:

126

Theorem 16 For a lambda term e, λκ.@JeK(λv.@κ v) is βη-equivalent to the
corresponding result term of the Fischer/Plotkin transformation. ✷

The implementation of the Danvy/Filinski transformation is straightforward:
Static abstractions and applications become the corresponding constructs in
the metalanguage, and their dynamic counterparts become syntax constructors.

The introduction of additional η redexes allows for the classification of the
applications and abstractions of a lambda term. Mostly, they participate in
administrative redexes and therefore do not show up in the resulting term.
However, there is an exception:

@Jλf.@f xK(λv.v) = λf.λκ.@(@f x) (λa.@κ a)

The residual term still contains an η redex introduced by the CPS transfor-
mation. This has potentially serious consequences, as the application in the
original term is a tail call. Some modern programming languages based on the
lambda calculus (most notably Scheme) demand that tail calls do not create
new continuations. However, the above η redex is just that.

Therefore, it is necessary to augment the transformation to guard against
this case. The idea is to duplicate the transformation rules: A new version of
the rules is for “trivial” continuations of the form λv.@κ v; the new rules avoid
building the redex in the residual rules. The copied rules are called J K′ in the
following definition.

Definition 58 (Tail-Recursive Danvy/Filinski CPS Transformation) Let
e be a lambda term. The tail-recursive Danvy/Filinski CPS Transformation is
a function J K : E → (E → E)→ E:

JxK := λκ.@κ x

Jλx.eK := λκ.@κ(λx.λk.(@JeK′k)

J@e1 e2K := λκ.@Je1K (λv1.@Je2K (λv2.@(@v1 v2) (λa.@κ a)))

JxK′ := λk.@k x

Jλx.eK′ := λk.@k(λx.λk.(@JeK′k)

J@e1 e2K := λk.@Je1K (λv1.@Je2K (λv2.@(@v1 v2) k))

✷

Note that Theorem 16 requires a slight reformulation: The result of transforming
a term e into CPS in a dynamic context is given by λκ.@JeK′κ.

127

19 Concurrent Access to Shared Resources

This section relies on material from Concepts, Techniques, and Models of Com-
puter Programming by Peter Van Roy and Saif Haridi (to appear with MIT
Press).

To coordinate currently running threads it is not sufficient to pass a param-
eter at the beginning and reap a result at the end. Instead, the threads must
communicate while they are running, but at the same time be as independent
as possible.

The simple-minded approach of letting threads access shared state without
further precaution is doomed, as the following example shows. The underlying
assumption is that assignment and read operations are atomic, that is, they
cannot be interrupted in transit.

var m

thread A {

x = get m; // A1

set m (x+1); // A2

y = get m; // A3

print y; // A4

}

...

m = 0;

spawn(A);

spawn(A);

...

Depending on the exact interleaving of the operations, the program may print
out any of the following four different results (with B denoting the second
thread):

1 1 // A1, B1, [A2, A3, A4, B2, B3, B4] any interleaving

1 2 // A1, A2, A3, [A4, B1, B2, B3, B4] any interleaving

2 1 // A1, A2, A3, B1, B2, B3, B4, A4

2 2 // A1, A2, B1, B2, [A3, A4, B3, B4] any interleaving

Since the result depends on the interleaving, it is very hard to write correct
programs using this model. Nevertheless, there are algorithms (e.g., Dekker’s
algorithm) that guarantee mutual exclusion: each thread has designated crit-
ical regions in which it modifies shared state. The job of a mutual exclusion
algorithm is to ensure that

1. at any time, at most one thread is in a critical region,

2. if more than one thread attempts to enter a critical region at the same
time, one of the threads is elected to proceed (and the others are blocked)
in a finite amount of time,

128

3. stopping a thread outside its critical region does not influence the other
threads.

However, algorithms like Dekker’s are too low-level. They are unflexible to use
and hard to reason about. Hence, programming languages have facilities (or
libraries) to ease the management of concurrent access to shared memory cells.

Suppose, we wish to implement a stack datastructure for use in concurrent
threads. Let’s start naively:

let stack = ref nil

push (x) {

s = !stack;

stack := cons x s

}

pop () {

case !stack of

x:s -> stack := s; return x

nil -> raise StackEmpty

}

in { push = push, pop = pop }

Unfortunately, there is no guarantee that stack does not change between s =

!stack and the following update operation in push, so that stack entries may
be lost. Similarly, there is no guarantee that stack does not change between
the match and the update in pop so that a stack entry may be popped multiple
times.

There are three general techniques for avoiding such incidents: locks, moni-
tors, and transactions.

• Locks allow grouping of atomic operations to larger atomic operations.

• Monitors extend locks with wait points where threads may be parked just
outside the lock.

• Transactions refine locks to have to possible exits: a normal one and an
exceptional one. The latter can be taken at any time with the result that
the transaction has no effect on the state.

19.1 Locks

A lock guards the access of a thread to a critical region. Each lock should be
responsible for a shared resource which may be internal to the program or exter-
nal. For internal resources (like objects implementing some service) guarantees
can be given about the behavior of the program. For external resources, locks
can be created dynamically and it is the programmers responsibility to match
critical regions and the shared resources accessed in them with their locks.

A typical API for locks:

129

• newLock : () -> Lock

creates a new lock

• isLock : Object -> Bool

checks if an object is a lock.

• withLock : Lock -> (Unit -> X) -> X “guarded statement”
runs the given thunk under control of the lock. That is, withLock l th

blocks until there is no thread active inside a region protected with lock
l. Then one of the blocked threads is chosen to execute its thunk.

A program may have many guarded statements with the same lock. Typically,
locks are reentrant, that is, if the thread that already has the lock attempts
to execute another guarded statement for the same lock, then it is immedi-
ately granted access. This is useful if an public operation calls another public
operation that requires access to the same resource.

19.1.1 Concurrent Stack ADT

Here is an implementation of the stack using locks. It creates the lock object at
the same time as the stack and uses guarded statements to lump together the
operations on the stack cell.

let stack = ref nil

l = newLock ()

push (x) {

withLock (l, function () {

s = !stack;

stack := cons x s

})

}

pop () {

withLock (l, function () {

case !stack of

x:s -> stack := s; return x

nil -> raise StackEmpty

})

}

in { push = push, pop = pop }

Note that the implementation of exceptions must be integrated with lock man-
agement. Since raising the exception escapes from the scope of the guarded
statement, the implementation of withLock must capture all exceptions, re-
lease the lock, and the reraise the exception.

19.1.2 Tuple Spaces

David Gelernter has invented an abstraction called “Tuple Spaces” for con-
current programming. It provides a coordination model between concurrently

130

execution threads and can be added to any programming language.
A tuples space consists of a multi-set of tuples, TS, with three operations

• write :: TupleSpace -> Tuple -> Unit

adds a tuple to the tuple space

• read :: TupleSpace -> Pattern -> Tuple

blocks until the tuple space contains a tuple matching Pattern. Then it
removes the tuples from the space and returns it

• readNonBlock :: TupleSpace -> Pattern -> Maybe Tuple

If the tuple space contains a tuple t matching Pattern, then t is removed
from the space and the result is Just t. Otherwise, the result is Nothing.

Hence, tuple spaces have two important properties:

1. They are content-addressed.

2. They are asynchronous in that readers are decoupled from writers.

Here is an implementation of the stack with a tuple space.

let ts = newTupleSpace ()

push (x) {

let stack (s) = read ts (stack (X))

in write ts (stack (cons x s))

}

pop () {

let stack (s) = read ts (stack (cons X S))

case s of

x:s -> write ts (stack s); return x

nil -> raise StackEmpty // won’t happen

}

in write (ts, stack (nil));

return { push = push, pop = pop }

Note that the pop operation never raises an exception. Instead, due to the
pattern, it blocks until a value is available.

A tuple space may be implemented with a lock, a dictionary, and a queue
datatype. The idea is that the tuples are stored in the dictionary with queues
containing entries that match the same pattern. A single lock governs access to
the dictionary and the queues contained within.

19.1.3 Implementing Locks

Implementing a lock requires an atomic exchange operation for a memory cell.
Such an operation is provided by all common processors.

131

type State = Empty | Occupied

newLock () {

return { state = ref Empty }

}

withLock (l, thunk) {

let oldstate = ref Occupied in

while (1) {

exchange(oldstate, l.state);

if (!oldstate == Empty) {

try {

r = thunk ();

return r;

} finally {

oldstate := Empty;

exchange(oldstate, l.state);

}

} else {

yield ();

}

}

}

This implementation does not guarantee fairness, i.e., that every thread at-
tempting to obtain the lock eventually gets it. It is also expensive in that
a thread may check the state over and over again even if the state has not
changed. For that reason, the implementation of locks is usually entangled with
the implementation of threads. Each lock has a separate queue of threads wait-
ing for the lock. If a thread cannot immediately be granted the lock, then the
thread is suspended and put on the lock’s queue (not on the scheduler’s general
run queue). Whenever the lock is released, the top entry of the lock’s queue is
moved to the run queue.

To obtain reentrant locks requires an additional field for storing the current
thread in the lock data structure. If the lock is occupied, then withLock first
checks if it is occupied by the same thread and, if so, the thunk is started
immediately.

19.2 Monitors

Locks alone do not provide enough information, in many cases. For example,
consider an ADT implementing a concurrent, bounded buffer. A thread that
wants to deposit an element in the buffer may discover that the buffer is full (and
the be unable to proceed) even though no other thread is currently accessing
the buffer. While the latter can be regulated with a lock, the former requires a
way to block a thread until a certain condition is fulfilled. This condition may
be communicated in the form of a message that a reader of the buffer sends to
a potential writer.

132

The standard abstraction for this situation is a monitor. It has been intro-
duced by Per Brinch-Hansen and further developed by Hoare. Monitors are also
built into the Java language.

A monitor is a lock extended with program control over how waiting threads
enter and exit the lock. A monitor may be structured in one or more queues of
waiting threads. We’ll consider the simpler case (one queue) first.

A monitor adds two new operations, wait and notify, to the API of locks.
Both are only acceptable from inside a guarded statement (this can be guaran-
teed by the compiler if monitors are built into the language). In one variant, a
monitor consists of an internal lock and a set of waiting threads (the wait set).

• wait : Unit -> Unit

– suspends the current thread and

– puts it in the monitor’s internal wait set

– releases the lock

• notify : Unit -> Unit

– selects a thread t from the internal wait set

– places t on the queue for the lock

• notifyAll : Unit -> Unit

performs notify for all threads in the internal wait set

As an example, here is the code for a sequential bounded buffer.

create (n) {

let buf = newArray n 0

first = ref 0

last = ref 0

in

{ put = function (x) {

if ((!last+1) % n == !first) { raise BufferFull }

buf [!first] := x;

first := !first + 1;

},

get = function () {

if (!last == !first) { raise BufferEmpty }

let x = buf [!last]

in last := (!last+1) % n;

return x

}

}

}

133

With a monitor, instead of raising an exception, the implementation could
wait until the condition is fulfulled. This implementation gives raise to a typ-
ical programming pattern where the body of each operation is guarded by the
monitor and starts with waiting until a precondition is fulfilled.

create (n) {

let buf = newArray n 0

first = ref 0

last = ref 0

m = newMonitor ()

in

{ put = function (x) {

withMonitor m (function () {

while ((!last+1) % n == !first) {

wait (m);

}

buf [!first] := x;

first := !first + 1;

notifyAll (m)

})},

get = function () {

withMonitor m (function () {

while (!last == !first) {

wait (m);

}

let x = buf [!last]

in last := (!last+1) % n;

notifyAll (m);

return x

})}

}

}

A variation of the semantics of a monitor is to have notify remove a thread
from the wait set and then immediately pass the lock to that thread. Since there
is now a fixed association between occurrences of notify and preconditions, it
is common in this variation to have multiple wait sets each of which comes with
a condition variable (with operations wait and notify). In the bounded buffer
example, there would be two condition variables, one for the buffer full condition
and another for buffer empty.

19.3 Transactions

A transaction is any operation that satisfies the ACID properties:

• A for atomic: no intermediate states of a transaction’s execution are
observable. A transaction either commits (finishes successfully and the

134

changed state becomes visible instantaeously) or it aborts, in which case
the whole transaction has no effect on the state.

• C for consistent : observable states respect the system’s invariants. This
is a responsibility of the programmer.

• I for isolation (serializability): several transaction can take place concur-
rently without inference.

• D for durability (persistency): observable state changes survive system
crashes.

Outside the database world, not all four properties of transactions are always
required. Concepts like durability and atomicity also make sense by themselves.
Also subsets are possible. For example, an operation satisfying ACI may be
called a lightweight transaction.

A typical programming setting might be an operation that throws an ex-
ception in the middle of some state transformation. The problem is that the
current state may not be consistent because the exception occured in the middle
of some reorganization. This might be handled in the following ways.

• The caller is responsible for cleaning up and getting back to a consistent
state.

• The operation may be put inside a transaction where raising an exception
correponsinds to aborting the transaction.

Another motivation is fault tolerance, where transactions can help to contain
the effect of a fault in a limited part of the application.

Transaction may also be nested to gain the same results for smaller units
inside a larger transaction.

As already stated, some of the transactional properties can be useful on
their own. This and how they can be put back together to implement full
transactions is explained in greater detail in the paper: Composing first-class
transactions. Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M.
Nettles, Jeannette M. Wing. ACM Transactions on Programming Languages
and Systems (TOPLAS), Volume 16 Issue 6, November 1994.

19.3.1 Persistence

A persistent value is one that outlives the computation that created it. In
particular, a persistent value will survive a crash. In the orthogonal persistence
model, all data reachable by pointer dereferencing from a distinguished location,
the persistent root, are persistent. When a persistency transaction terminates,
all persistent data modified by the transaction are atomically saved to stable
storage. If a crash occurs during the transaction, the last committed state is
recoverable from stable storage. All data not reachable from the persistent root
are lost. Conceptually, a crash aborts all top-level transactions (of any flavor)

135

and terminates all threads, so there is no mechanism for a persist-only trans-
action to abort in isolation. A variety of approaches can be taken to guarantee
that the effects of top-level transactions on stable storage are atomic. For ex-
ample, the effects of nested transactions may be made permanent only when the
enclosing top-level transaction commits. This approach simplifies crash recov-
ery but assumes that the number of modifications done by nested transactions
is relatively small. An alternative approach would make nested transactions
effects permanent when they commit, but then crash recovery would have to
undo such effects.

19.3.2 Undoability

A top-level undo-only transaction has no special effect if it commits. If it aborts
then all changes it made to the store are undone. One possible semantics for
undo reverts changes to volatile data in addition to changes to persistent data.
At the start of an undo-only transaction (conceptually) a checkpoint of the
store is made. If the transaction terminates successfully, then nothing unusual
happens; if not, then the effects of the transaction are rolled back to the check-
pointed state, at which point a possibly different computation can begin. Undo-
only transactions may commit or abort regardless of whether they are nested.
However, since a nested transaction’s commit is relative to the action of its par-
ent, if the parent aborts then the effects of the (committed) nested transaction
must be undone along with the parent’s other changes. Thus, when a child
transaction commits it hands back (antiinherits) to its parent its set of changes
to the store.

19.3.3 Locks

Two-phase reader/writer (R/ W) locks are a well-known mechanism for en-
suring serializability. Alone, they provide no support for commit or abort. A
transaction acquires a R/W lock and holds it until the transaction commits or
aborts, thereby avoiding the problem of cascading aborts. Write locks guarantee
that any two concurrent transactions modify disjoint sets of data in the store,
unless one is a descendant of the other. Under Moss’s standard locking rules
for nested transactions [Moss 1985], transactions acquire locks subject to the
following rules:

• A transaction may acquire a read lock if all writers are ancestors of the
transaction.

• A transaction may acquire a write lock if all readers and writers are an-
cestors of the transaction.

• When a transaction commits, all its locks are antiinherited, i.e., handed off
to the parent or released if the transaction is top-level. If the transaction
aborts, all its locks are released.

136

However, a parent transaction may run concurrently with its children, so we
must check that the read (or write) condition holds not only when a lock is
acquired, but also every time the transaction reads (or writes) the associated
data object. This check is reasonable for programs, which use mutable data
infrequently.

19.3.4 APIs

signature PERS =

sig val persist : (a -> b) -> a -> b

val bind : identifier * a -> unit

val unbind : identifier -> unit

val retrieve : identifier -> a

...

end

The function (persist f) behaves in the save way as f, extensionally. However,
once it has terminated, all changes that fmade to the persistent store (via bind)
are saved to stable storage.

signature UNDD =

sig val undoably : (a-> b) -> a-> b

exception Restore of exn

...

end

The function (undoably f) behaves like unless the exception Restore is raised
inside f. In that case, all modifications to the store since f was entered are
reverted. The implementation logs all store operations and replays the log in
reverse order when the exception is raised. In case of a nested transaction, the
undo log of a child is spliced into the parent’s log.

signature RW_REF =

sig type RW_Ref (a)

type Lock

exception Read_Not_Held

exception Write_Not_Held

val create_rw_ref : a * Lock -> RW_Ref (a)

val rw_get : RW_Ref (a) -> a

val rw_set : RW_Ref (a) -> a -> Unit

val lock_of : RW_Ref (a) -> Lock

...

end

Creates reference cells that are under the control of a lock. Locks may be
acquired for reading and for writing. Locks are released implicitly at the end of
the transaction (or antiinherited to the parent in case of a nested transaction).

137

References

[1] Olivier Danvy and Andrzej Filinski. Representing control: A study of the
CPS transformation. Mathematical Structures in Computer Science, 2:361–
391, 1992.

[2] Michael J. Fischer. Lambda-calculus schemata. Lisp and Symbolic Compu-
tation, 6(3/4):259–288, 1993.

[3] Gordon Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

138

