
Principles of Programming Languages
Lecture 01 Introduction

Albert-Ludwigs-Universität Freiburg

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

16 Apr 2018

Contents of the course

Building blocks of progamming languages
Vernacular for talking about programming languages
Tools for describing the meaning of a program
Techniques for reasoning about a program

Thiemann POPL 2018-04-16 2 / 28

Why bother?

Improved understanding of programs
Verify program transformations
Verify compilers
Design and verify static analyses

Thiemann POPL 2018-04-16 3 / 28

Key aspect: Semantics

Dynamics — run time

describes execution of a program
wide variety of styles

Statics — compile time

describes checks before execution
conditions that avoid certain execution errors
principal example: types

Thiemann POPL 2018-04-16 4 / 28

Requirements

Description of

syntax
execution states
evolving execution
static rules

Checking that

execution preserves static rules
static rules enable execution

Thiemann POPL 2018-04-16 5 / 28

Plan

1 Prelude

2 Syntax
Concrete sytax
Abstract syntax

3 Semantics

Thiemann POPL 2018-04-16 6 / 28

Concrete syntax

Concrete syntax describes valid program texts
Description in two stages

1 lexical syntax
2 context-free syntax

Thiemann POPL 2018-04-16 7 / 28

Lexical syntax

The lexical syntax defines the “atoms” of the language in terms of
regular languages. The lexical analysis (scanner, lexer) of a
compiler partitions a program into lexemes and maps them into
tokens. (Lexemes are sequences of input characters, tokens are
symbolic values.)

Thiemann POPL 2018-04-16 8 / 28

Lexical syntax, example

Typical lexeme classes are identifiers, numeric literals, opening and
closing parentheses, and keywords

class regexp example token
identifier [A-Za-z][A-Za-z0-9]* Catch22 ident(Catch22)
numeric lit [-+]?[0-9]+ -42 num (42)
opening par ((openingPar
closing par)) closingPar
keyword while while kwWhile

The scanner typically ignores whitespace, that is sequences of
spaces, tabulators, line feeds, and so on. The scanner also
removes comments.

Thiemann POPL 2018-04-16 9 / 28

Context-free Syntax

given by a context-free grammar G
symbols are tokens from lexical analysis
a parser for G maps a token sequence to a derivation tree of
G or fails if the token sequence is not in the language.

Thiemann POPL 2018-04-16 10 / 28

Context-free syntax, example

A grammar for parsing infix expressions.

〈expr〉 → 〈factor〉
〈expr〉 → 〈expr〉−〈factor〉
〈factor〉 → 〈atom〉
〈factor〉 → 〈factor〉/〈atom〉
〈atom〉 → a
〈atom〉 → (〈expr〉)

It reflects the convention that / binds tighter than - and that
both associate to the left.

Thiemann POPL 2018-04-16 11 / 28

Context-free syntax, derivation tree

Derivation tree for a / a - (a - a / a).
TODO

Thiemann POPL 2018-04-16 12 / 28

Abstract syntax (AST)

Much of the structure of the derivation tree of a grammar suitable
for parsing is irrelevant for the meaning of an expression. For that
task, a much simpler structure is sufficient, the abstract syntax:

e ::= e−e | e/e | a

Abstract syntax is also described by a context-free grammar
The point of this grammar is not the set of strings derivable
from it, but rather its set of derivation trees, the abstract
syntax trees (AST).

Thiemann POPL 2018-04-16 13 / 28

Describing AST

More precisely, an AST is a term built from a signature of
operation symbols (the above grammar is a common, but sloppy
way of writing that signature). Technically, the non-terminals of
the grammar are considered as types and an explicit signature
specifies the restrictions.

− : 〈expr〉 × 〈expr〉 → 〈expr〉
/ : 〈expr〉 × 〈expr〉 → 〈expr〉
a : → 〈expr〉

Thiemann POPL 2018-04-16 14 / 28

Language support for AST

Functional programming languages directly support tree datatypes
suitable for defining AST. For example, the type expr can be
defined as follows in OCaml:

type expr = subExpr of expr * expr
| divExpr of expr * expr
| conExpr

(The lexemes / and - cannot be used because they are predefined
by the OCaml language. Constructors like subExpr, divExpr,
conExpr must be used instead.)

Thiemann POPL 2018-04-16 15 / 28

Language support for AST

PLT Redex is a domain specific language for semantics
engineering. It provides extensive support for most constructions
used in this course.

(define-language expressions
(E ::= (- E E)

(/ E E)
number))

There are very few restrictions on lexemes in PLT Redex.

Thiemann POPL 2018-04-16 16 / 28

Plan

1 Prelude

2 Syntax
Concrete sytax
Abstract syntax

3 Semantics

Thiemann POPL 2018-04-16 17 / 28

Semantics

assign meaning to a program text
usually by a mapping from AST to mathematical object
different styles of semantics ⇔ different mathematical objects
denotational: defines domains that capture final result of a

program; the object is an element of a suitable
domain

operational: defines an abstract machine which comes with a
notion of (step-wise) execution; the object is a
state of this machine

axiomatic: defines the meaning via logical formulas
expressing pre- and postconditions; the object is
a pair of pre- and postconditions

Thiemann POPL 2018-04-16 18 / 28

Operational Semantics

This Course
In this course, we concentrate on operational semantics because of
its simple foundations.

Two styles of operational semantics

Small-step operational semantics describes program execution as
a sequence of transformations starting from the
initial state and ending with the final result (if any).

Big-step operational semantics describes program execution as a
function from program text to the result. Often
close to an interpreter.

Thiemann POPL 2018-04-16 19 / 28

Small-step Operational Semantics
Example

e ::= e−e | e/e | n

where n ∈ Q ranges over rational numbers.
Small-step operational semantics is specified as an abstract
machine:

state expression e

transformation given by a transition relation e −→ e ′, a binary
relation on expressions

final state number n: particular expressions that denote final
results, often called values

Thiemann POPL 2018-04-16 20 / 28

Small-step Operational Semantics
Example transition relation

-X
m-n −→ p where p = m − n ∈ rat

/X
m/n −→ p where n 6= 0 and p = m/n ∈ rat

-L
e1 −→ e ′1

e1-e2 −→ e ′1-e2

-R
e2 −→ e ′2

e1-e2 −→ e1-e ′2

/L
e1 −→ e ′1

e1/e2 −→ e ′1/e2

/R
e2 −→ e ′2

e1/e2 −→ e1/e ′2

Thiemann POPL 2018-04-16 21 / 28

Small-step Operational Semantics
Example execution

(42/1)− (17− 17) 42− (17− 17)

(42/1)− 0 42− 0 42

-L,/X

-R,-X -R,-X

-L,/X -X

Thiemann POPL 2018-04-16 22 / 28

Small-step Operational Semantics
Why translation relation?

Partial operations

There may be no useful transition from a (non-final) state. For
example, 1/0 has no transition, but it is not a number.

Nondeterminism
Occasionally the order in which arguments are evaluated does not
matter.

Concurrency

It is the point of modeling concurrent execution that any thread
can take the next step.

Thiemann POPL 2018-04-16 23 / 28

Small-step Operational Semantics
Deterministic rule set for evaluation of expressions

-X
m-n −→ p where p = m − n ∈ Q

/X
m/n −→ p where n 6= 0 and p = m/n ∈ Q

-L
e1 −→ e ′1

e1-e2 −→ e ′1-e2

-R
e2 −→ e ′2

m-e2 −→ m-e ′2

/L
e1 −→ e ′1

e1/e2 −→ e ′1/e2

/R
e2 −→ e ′2

m/e2 −→ m/e ′2

Thiemann POPL 2018-04-16 24 / 28

Big-step Operational Semantics
Example

Goal
Relate an expression to its final value.

Need to specify binary relation, called evaluation, between
expressions and numbers e ↪→ n.
Evaluation may be partial as for 1/0
Evaluation is usually deterministic (i.e. a partial function)

Thiemann POPL 2018-04-16 25 / 28

Big-step Operational Semantics
Example evaluation relation

n ↪→ n

e1 ↪→ n1 e2 ↪→ n2

e1-e2 ↪→ m
where m = n1 − n2 ∈ Q

e1 ↪→ n1 e2 ↪→ n2

e1/e2 ↪→ m
where n2 6= 0 and m = n1/n2 ∈ Q

Thiemann POPL 2018-04-16 26 / 28

Big-step Operational Semantics
Example evaluation

42 ↪→ 42 1 ↪→ 1
42/1 ↪→ 42

17 ↪→ 17 17 ↪→ 17
17− 17 ↪→ 0

(42/1)− (17− 17) ↪→ 42

Thiemann POPL 2018-04-16 27 / 28

Comparison

Nontermination observable in small-step; non-obvious solution for
big-step

Exceptions small-step gets stuck on exceptional subexpressions
like 1/0; big-step evaluation of every expression
containing 1/0 is undefined

Evaluation order reasonably easy to define in small-step; more
involved for big-step

Concurrency easy in small-step; non-obvious solution for big-step

But

big-step is close to an interpreter (i.e., more intuitive, close to
implementation)
some properties are easier to prove for big-step

Thiemann POPL 2018-04-16 28 / 28

	Prelude
	Syntax
	Concrete sytax
	Abstract syntax

	Semantics

