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Contents of the course

Building blocks of progamming languages
Vernacular for talking about programming languages
Tools for describing the meaning of a program
Techniques for reasoning about a program
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Why bother?

Improved understanding of programs
Verify program transformations
Verify compilers
Design and verify static analyses
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Key aspect: Semantics

Dynamics — run time

describes execution of a program
wide variety of styles

Statics — compile time

describes checks before execution
conditions that avoid certain execution errors
principal example: types
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Requirements

Description of

syntax
execution states
evolving execution
static rules

Checking that

execution preserves static rules
static rules enable execution
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Plan

1 Prelude

2 Syntax
Concrete sytax
Abstract syntax

3 Semantics
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Concrete syntax

Concrete syntax describes valid program texts
Description in two stages

1 lexical syntax
2 context-free syntax
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Lexical syntax

The lexical syntax defines the “atoms” of the language in terms of
regular languages. The lexical analysis (scanner, lexer) of a
compiler partitions a program into lexemes and maps them into
tokens. (Lexemes are sequences of input characters, tokens are
symbolic values.)
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Lexical syntax, example

Typical lexeme classes are identifiers, numeric literals, opening and
closing parentheses, and keywords

class regexp example token
identifier [A-Za-z][A-Za-z0-9]* Catch22 ident(Catch22)
numeric lit [-+]?[0-9]+ -42 num (42)
opening par ( ( openingPar
closing par ) ) closingPar
keyword while while kwWhile

The scanner typically ignores whitespace, that is sequences of
spaces, tabulators, line feeds, and so on. The scanner also
removes comments.
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Context-free Syntax

given by a context-free grammar G
symbols are tokens from lexical analysis
a parser for G maps a token sequence to a derivation tree of
G or fails if the token sequence is not in the language.
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Context-free syntax, example

A grammar for parsing infix expressions.

〈expr〉 → 〈factor〉
〈expr〉 → 〈expr〉−〈factor〉
〈factor〉 → 〈atom〉
〈factor〉 → 〈factor〉/〈atom〉
〈atom〉 → a
〈atom〉 → (〈expr〉)

It reflects the convention that / binds tighter than - and that
both associate to the left.
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Context-free syntax, derivation tree

Derivation tree for a / a - (a - a / a).
TODO
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Abstract syntax (AST)

Much of the structure of the derivation tree of a grammar suitable
for parsing is irrelevant for the meaning of an expression. For that
task, a much simpler structure is sufficient, the abstract syntax:

e ::= e−e | e/e | a

Abstract syntax is also described by a context-free grammar
The point of this grammar is not the set of strings derivable
from it, but rather its set of derivation trees, the abstract
syntax trees (AST).
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Describing AST

More precisely, an AST is a term built from a signature of
operation symbols (the above grammar is a common, but sloppy
way of writing that signature). Technically, the non-terminals of
the grammar are considered as types and an explicit signature
specifies the restrictions.

− : 〈expr〉 × 〈expr〉 → 〈expr〉
/ : 〈expr〉 × 〈expr〉 → 〈expr〉
a : → 〈expr〉
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Language support for AST

Functional programming languages directly support tree datatypes
suitable for defining AST. For example, the type expr can be
defined as follows in OCaml:

type expr = subExpr of expr * expr
| divExpr of expr * expr
| conExpr

(The lexemes / and - cannot be used because they are predefined
by the OCaml language. Constructors like subExpr, divExpr,
conExpr must be used instead.)
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Language support for AST

PLT Redex is a domain specific language for semantics
engineering. It provides extensive support for most constructions
used in this course.

(define-language expressions
(E ::= (- E E)

(/ E E)
number))

There are very few restrictions on lexemes in PLT Redex.
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Plan

1 Prelude

2 Syntax
Concrete sytax
Abstract syntax

3 Semantics
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Semantics

assign meaning to a program text
usually by a mapping from AST to mathematical object
different styles of semantics ⇔ different mathematical objects
denotational: defines domains that capture final result of a

program; the object is an element of a suitable
domain

operational: defines an abstract machine which comes with a
notion of (step-wise) execution; the object is a
state of this machine

axiomatic: defines the meaning via logical formulas
expressing pre- and postconditions; the object is
a pair of pre- and postconditions
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Operational Semantics

This Course
In this course, we concentrate on operational semantics because of
its simple foundations.

Two styles of operational semantics

Small-step operational semantics describes program execution as
a sequence of transformations starting from the
initial state and ending with the final result (if any).

Big-step operational semantics describes program execution as a
function from program text to the result. Often
close to an interpreter.
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Small-step Operational Semantics
Example

e ::= e−e | e/e | n

where n ∈ Q ranges over rational numbers.
Small-step operational semantics is specified as an abstract
machine:

state expression e

transformation given by a transition relation e −→ e ′, a binary
relation on expressions

final state number n: particular expressions that denote final
results, often called values
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Small-step Operational Semantics
Example transition relation

-X
m-n −→ p where p = m − n ∈ rat

/X
m/n −→ p where n 6= 0 and p = m/n ∈ rat

-L
e1 −→ e ′1

e1-e2 −→ e ′1-e2

-R
e2 −→ e ′2

e1-e2 −→ e1-e ′2

/L
e1 −→ e ′1

e1/e2 −→ e ′1/e2

/R
e2 −→ e ′2

e1/e2 −→ e1/e ′2
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Small-step Operational Semantics
Example execution

(42/1)− (17− 17) 42− (17− 17)

(42/1)− 0 42− 0 42

-L,/X

-R,-X -R,-X

-L,/X -X
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Small-step Operational Semantics
Why translation relation?

Partial operations

There may be no useful transition from a (non-final) state. For
example, 1/0 has no transition, but it is not a number.

Nondeterminism
Occasionally the order in which arguments are evaluated does not
matter.

Concurrency

It is the point of modeling concurrent execution that any thread
can take the next step.
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Small-step Operational Semantics
Deterministic rule set for evaluation of expressions

-X
m-n −→ p where p = m − n ∈ Q

/X
m/n −→ p where n 6= 0 and p = m/n ∈ Q

-L
e1 −→ e ′1

e1-e2 −→ e ′1-e2

-R
e2 −→ e ′2

m-e2 −→ m-e ′2

/L
e1 −→ e ′1

e1/e2 −→ e ′1/e2

/R
e2 −→ e ′2

m/e2 −→ m/e ′2
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Big-step Operational Semantics
Example

Goal
Relate an expression to its final value.

Need to specify binary relation, called evaluation, between
expressions and numbers e ↪→ n.
Evaluation may be partial as for 1/0
Evaluation is usually deterministic (i.e. a partial function)
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Big-step Operational Semantics
Example evaluation relation

n ↪→ n

e1 ↪→ n1 e2 ↪→ n2

e1-e2 ↪→ m
where m = n1 − n2 ∈ Q

e1 ↪→ n1 e2 ↪→ n2

e1/e2 ↪→ m
where n2 6= 0 and m = n1/n2 ∈ Q

Thiemann POPL 2018-04-16 26 / 28



Big-step Operational Semantics
Example evaluation

42 ↪→ 42 1 ↪→ 1
42/1 ↪→ 42

17 ↪→ 17 17 ↪→ 17
17− 17 ↪→ 0

(42/1)− (17− 17) ↪→ 42
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Comparison

Nontermination observable in small-step; non-obvious solution for
big-step

Exceptions small-step gets stuck on exceptional subexpressions
like 1/0; big-step evaluation of every expression
containing 1/0 is undefined

Evaluation order reasonably easy to define in small-step; more
involved for big-step

Concurrency easy in small-step; non-obvious solution for big-step

But

big-step is close to an interpreter (i.e., more intuitive, close to
implementation)
some properties are easier to prove for big-step
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