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Contents of the course

m Building blocks of progamming languages
m Vernacular for talking about programming languages
m Tools for describing the meaning of a program

m Techniques for reasoning about a program
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Why bother?

m Improved understanding of programs
m Verify program transformations
m Verify compilers

m Design and verify static analyses
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Key aspect: Semantics

Dynamics — run time

m describes execution of a program

m wide variety of styles

Statics — compile time

m describes checks before execution
m conditions that avoid certain execution errors

m principal example: types
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Requirements

Description of

m syntax
B execution states
m evolving execution

m static rules

Checking that

m execution preserves static rules

m static rules enable execution
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Syntax
m Concrete sytax
m Abstract syntax
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Concrete syntax

m Concrete syntax describes valid program texts
m Description in two stages

lexical syntax
context-free syntax
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Lexical syntax
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The lexical syntax defines the “atoms” of the language in terms of
regular languages. The lexical analysis (scanner, lexer) of a
compiler partitions a program into lexemes and maps them into
tokens. (Lexemes are sequences of input characters, tokens are
symbolic values.)
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Lexical syntax, example
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Typical lexeme classes are identifiers, numeric literals, opening and
closing parentheses, and keywords

class regexp example  token

identifier [A-Za-z] [A-Za-z0-9]1* Catch22 ident(Catch22)
numeric lit  [-+]17[0-9]+ -42 num (42)
opening par ( ( openingPar
closing par ) ) closingPar
keyword while while kwWhile

The scanner typically ignores whitespace, that is sequences of
spaces, tabulators, line feeds, and so on. The scanner also
removes comments.

Thiemann POPL 2018-04-16 9 /28



Context-free Syntax

m given by a context-free grammar G
m symbols are tokens from lexical analysis

m a parser for G maps a token sequence to a derivation tree of
G or fails if the token sequence is not in the language.
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Context-free syntax, example
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A grammar for parsing infix expressions.

(expr)  — (factor)

(expry  — (expr)—(factor)
(factor) — (atom)
(factor) — < factor) / (atom)
(atom) —

(atom) — (<expr>)

It reflects the convention that / binds tighter than - and that
both associate to the left.
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Context-free syntax, derivation tree

Derivation tree fora / a - (a - a / a).
TODO
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Abstract syntax (AST)
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Much of the structure of the derivation tree of a grammar suitable
for parsing is irrelevant for the meaning of an expression. For that
task, a much simpler structure is sufficient, the abstract syntax:

e = e—el|e/el|a

m Abstract syntax is also described by a context-free grammar

m The point of this grammar is not the set of strings derivable
from it, but rather its set of derivation trees, the abstract
syntax trees (AST).
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Describing AST
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More precisely, an AST is a term built from a signature of
operation symbols (the above grammar is a common, but sloppy
way of writing that signature). Technically, the non-terminals of
the grammar are considered as types and an explicit signature
specifies the restrictions.

— ¢ (expr) x (expr) — (expr)
/ : (expr) x (expr) — (expr)
a —  (expr)
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Language support for AST
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Functional programming languages directly support tree datatypes
suitable for defining AST. For example, the type expr can be
defined as follows in OCaml:

= subExpr of expr * expr
| divExpr of expr * expr
| conExpr

type expr

(The lexemes / and - cannot be used because they are predefined
by the OCaml language. Constructors like subExpr, divExpr,
conExpr must be used instead.)
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Language support for AST

PLT Redex is a domain specific language for semantics
engineering. It provides extensive support for most constructions
used in this course.

(define-language expressions
(E ::= (- EE)
(/ E E)

number))

There are very few restrictions on lexemes in PLT Redex.
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Semantics
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Semantics
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B assign meaning to a program text
m usually by a mapping from AST to mathematical object
m different styles of semantics < different mathematical objects
denotational: defines domains that capture final result of a
program; the object is an element of a suitable
domain
operational: defines an abstract machine which comes with a
notion of (step-wise) execution; the object is a
state of this machine
axiomatic: defines the meaning via logical formulas
expressing pre- and postconditions; the object is
a pair of pre- and postconditions
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Operational Semantics

This Course

In this course, we concentrate on operational semantics because of
its simple foundations.

Two styles of operational semantics

Small-step operational semantics describes program execution as
a sequence of transformations starting from the
initial state and ending with the final result (if any).

Big-step operational semantics describes program execution as a
function from program text to the result. Often
close to an interpreter.
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Small-step Operational Semantics

Example

ex=e—ele/e|n

where n € Q ranges over rational numbers.
Small-step operational semantics is specified as an abstract
machine:

state expression e

transformation given by a transition relation e — €', a binary
relation on expressions

final state number n: particular expressions that denote final
results, often called values
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Small-step Operational Semantics

Example transition relation
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-X
m-n— p where p=m—n € rat

/X
m/n — p where n# 0 and p=m/n € rat

-L -R

e1 — e e — &
e1-eo — €f-e e1-e — e1-¢€)
/L /R

e1 — e e — &
er/ex — €/e er/ex — e1/e
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Small-step Operational Semantics

Example execution

-R,-X

-L,/X

42 -0
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Small-step Operational Semantics

Why translation relation?

Partial operations

There may be no useful transition from a (non-final) state. For
example, 1/0 has no transition, but it is not a number.

Nondeterminism

Occasionally the order in which arguments are evaluated does not
matter.

Concurrency

It is the point of modeling concurrent execution that any thread
can take the next step.
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Small-step Operational Semantics

Deterministic rule set for evaluation of expressions

(&)
[
=
-
zl.u
o

-X
m-n—>p wherep=m—neQ

/X
m/n— p where n#0and p=m/ne Q
L -R

e1 — €] e — &
e1-e — €-e m-e; —> m-eh
/L /R

e1 — €] e — €
er/es — ej/e m/ey — m/eb
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Big-step Operational Semantics

Example

Relate an expression to its final value.

m Need to specify binary relation, called evaluation, between
expressions and numbers e < n.

m Evaluation may be partial as for 1/0

m Evaluation is usually deterministic (i.e. a partial function)

Thiemann POPL 2018-04-16 25 / 28

2
=

O
o
2
Q
L
oz
T8



Big-step Operational Semantics

Example evaluation relation
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n<n
€1 — m € — Ny
where m=n; —n, € Q
el-& = m
€1 —m € — Ny
where np £ 0 and m=ny/n € Q
e1/e — m
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Big-step Operational Semantics

Example evaluation
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42542 11 17517 17 17
42/1 < 42 17— 17 =0
(42/1) — (17 — 17) < 42
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Comparison
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Nontermination observable in small-step; non-obvious solution for
big-step
Exceptions small-step gets stuck on exceptional subexpressions
like 1/0; big-step evaluation of every expression
containing 1/0 is undefined

Evaluation order reasonably easy to define in small-step; more
involved for big-step

Concurrency easy in small-step; non-obvious solution for big-step

But

m big-step is close to an interpreter (i.e., more intuitive, close to
implementation)

m some properties are easier to prove for big-step
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