Principles of Programming Languages

Lecture 01 Introduction

Albert-Ludwigs-Universitat Freiburg

FREIBURG

2
=

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

16 Apr 2018

Contents of the course

m Building blocks of progamming languages
m Vernacular for talking about programming languages
m Tools for describing the meaning of a program

m Techniques for reasoning about a program

Thiemann POPL 2018-04-16 2/ 28

Why bother?

m Improved understanding of programs
m Verify program transformations
m Verify compilers

m Design and verify static analyses

Thiemann POPL

2018-04-16

3 /28

2
=

O
o
2
Q
L
oz
T8

Key aspect: Semantics

Dynamics — run time

m describes execution of a program

m wide variety of styles

Statics — compile time

m describes checks before execution
m conditions that avoid certain execution errors

m principal example: types

Thiemann POPL 2018-04-16 4 /28

2
=

O
o
2
Q
L
oz
T8

Requirements

Description of

m syntax
B execution states
m evolving execution

m static rules

Checking that

m execution preserves static rules

m static rules enable execution

Thiemann POPL 2018-04-16 5 /28

2
=

O
o
2
Q
L
oz
T8

Syntax
m Concrete sytax
m Abstract syntax

Thiemann

POPL

2018-04-16

6/ 28

2
=

O
o
2
Q
L
oz
T8

Concrete syntax

m Concrete syntax describes valid program texts
m Description in two stages

lexical syntax
context-free syntax

Thiemann POPL

2018-04-16

7/ 28

2
=

O
o
2
Q
L
oz
T8

Lexical syntax

(&)
[
=
-
zl.u
o

The lexical syntax defines the “atoms” of the language in terms of
regular languages. The lexical analysis (scanner, lexer) of a
compiler partitions a program into lexemes and maps them into
tokens. (Lexemes are sequences of input characters, tokens are
symbolic values.)

Thiemann POPL 2018-04-16 8 /28

Lexical syntax, example

(&)
[
=
-
zl.u
o

Typical lexeme classes are identifiers, numeric literals, opening and
closing parentheses, and keywords

class regexp example token

identifier [A-Za-z] [A-Za-z0-9]1* Catch22 ident(Catch22)
numeric lit [-+]17[0-9]+ -42 num (42)
opening par ((openingPar
closing par)) closingPar
keyword while while kwWhile

The scanner typically ignores whitespace, that is sequences of
spaces, tabulators, line feeds, and so on. The scanner also
removes comments.

Thiemann POPL 2018-04-16 9 /28

Context-free Syntax

m given by a context-free grammar G
m symbols are tokens from lexical analysis

m a parser for G maps a token sequence to a derivation tree of
G or fails if the token sequence is not in the language.

Thiemann POPL 2018-04-16

10 / 28

2
=

O
o
2
Q
L
oz
T8

Context-free syntax, example

(&)
[
=
-
zl.u
o

A grammar for parsing infix expressions.

(expr) — (factor)

(expry — (expr)—(factor)
(factor) — (atom)
(factor) — < factor) / (atom)
(atom) —

(atom) — (<expr>)

It reflects the convention that / binds tighter than - and that
both associate to the left.

Thiemann POPL 2018-04-16 11 / 28

Context-free syntax, derivation tree

Derivation tree fora / a - (a - a / a).
TODO

Thiemann POPL

2018-04-16

12 / 28

2
=

O
o
2
Q
L
oz
T8

Abstract syntax (AST)

(&)
[
=
-
zl.u
o

Much of the structure of the derivation tree of a grammar suitable
for parsing is irrelevant for the meaning of an expression. For that
task, a much simpler structure is sufficient, the abstract syntax:

e = e—el|e/el|a

m Abstract syntax is also described by a context-free grammar

m The point of this grammar is not the set of strings derivable
from it, but rather its set of derivation trees, the abstract
syntax trees (AST).

Thiemann POPL 2018-04-16 13 / 28

Describing AST

(&)
[
=
-
zl.u
o

More precisely, an AST is a term built from a signature of
operation symbols (the above grammar is a common, but sloppy
way of writing that signature). Technically, the non-terminals of
the grammar are considered as types and an explicit signature
specifies the restrictions.

— ¢ (expr) x (expr) — (expr)
/ : (expr) x (expr) — (expr)
a — (expr)

Thiemann POPL 2018-04-16 14 / 28

Language support for AST

(&)
[
=
-
zl.u
o

Functional programming languages directly support tree datatypes
suitable for defining AST. For example, the type expr can be
defined as follows in OCaml:

= subExpr of expr * expr
| divExpr of expr * expr
| conExpr

type expr

(The lexemes / and - cannot be used because they are predefined
by the OCaml language. Constructors like subExpr, divExpr,
conExpr must be used instead.)

Thiemann POPL 2018-04-16 15 / 28

Language support for AST

PLT Redex is a domain specific language for semantics
engineering. It provides extensive support for most constructions
used in this course.

(define-language expressions
(E ::= (- EE)
(/ E E)

number))

There are very few restrictions on lexemes in PLT Redex.

Thiemann POPL 2018-04-16 16 / 28

2
=

O
o
2
Q
L
oz
T8

Semantics

Thiemann

POPL

2018-04-16

17 / 28

2
=

O
o
2
Q
L
oz
T8

Semantics

(&)
[
=
-
zl.u
o

B assign meaning to a program text
m usually by a mapping from AST to mathematical object
m different styles of semantics < different mathematical objects
denotational: defines domains that capture final result of a
program; the object is an element of a suitable
domain
operational: defines an abstract machine which comes with a
notion of (step-wise) execution; the object is a
state of this machine
axiomatic: defines the meaning via logical formulas
expressing pre- and postconditions; the object is
a pair of pre- and postconditions

Thiemann POPL 2018-04-16 18 / 28

Operational Semantics

This Course

In this course, we concentrate on operational semantics because of
its simple foundations.

Two styles of operational semantics

Small-step operational semantics describes program execution as
a sequence of transformations starting from the
initial state and ending with the final result (if any).

Big-step operational semantics describes program execution as a
function from program text to the result. Often
close to an interpreter.

Thiemann POPL 2018-04-16 19 / 28

2
=

O
o
2
Q
L
oz
T8

Small-step Operational Semantics

Example

ex=e—ele/e|n

where n € Q ranges over rational numbers.
Small-step operational semantics is specified as an abstract
machine:

state expression e

transformation given by a transition relation e — €', a binary
relation on expressions

final state number n: particular expressions that denote final
results, often called values

Thiemann POPL 2018-04-16

20 / 28

2
=

O
o
2
Q
L
oz
T8

Small-step Operational Semantics

Example transition relation

(&)
[
=
-
zl.u
o

-X
m-n— p where p=m—n € rat

/X
m/n — p where n# 0 and p=m/n € rat

-L -R

e1 — e e — &
e1-eo — €f-e e1-e — e1-¢€)
/L /R

e1 — e e — &
er/ex — €/e er/ex — e1/e

Thiemann POPL 2018-04-16 21 /28

Small-step Operational Semantics

Example execution

-R,-X

-L,/X

42 -0

Thiemann POPL

2018-04-16

22 / 28

UNI

FREIBURG

Small-step Operational Semantics

Why translation relation?

Partial operations

There may be no useful transition from a (non-final) state. For
example, 1/0 has no transition, but it is not a number.

Nondeterminism

Occasionally the order in which arguments are evaluated does not
matter.

Concurrency

It is the point of modeling concurrent execution that any thread
can take the next step.

Thiemann POPL 2018-04-16 23 /28

2
=

O
o
2
Q
L
oz
T8

Small-step Operational Semantics

Deterministic rule set for evaluation of expressions

(&)
[
=
-
zl.u
o

-X
m-n—>p wherep=m—neQ

/X
m/n— p where n#0and p=m/ne Q
L -R

e1 — €] e — &
e1-e — €-e m-e; —> m-eh
/L /R

e1 — €] e — €
er/es — ej/e m/ey — m/eb

Thiemann POPL 2018-04-16 24 / 28

Big-step Operational Semantics

Example

Relate an expression to its final value.

m Need to specify binary relation, called evaluation, between
expressions and numbers e < n.

m Evaluation may be partial as for 1/0

m Evaluation is usually deterministic (i.e. a partial function)

Thiemann POPL 2018-04-16 25 / 28

2
=

O
o
2
Q
L
oz
T8

Big-step Operational Semantics

Example evaluation relation

(&)
[
=
-
zl.u
o

n<n
€1 — m € — Ny
where m=n; —n, € Q
el-& = m
€1 —m € — Ny
where np £ 0 and m=ny/n € Q
e1/e — m

Thiemann POPL 2018-04-16 26 / 28

Big-step Operational Semantics

Example evaluation

(&)
[
=
-
zl.u
o

42542 11 17517 17 17
42/1 < 42 17— 17 =0
(42/1) — (17 — 17) < 42

Thiemann POPL 2018-04-16 27 / 28

Comparison

(&)
[
=
-
zl.u
o

Nontermination observable in small-step; non-obvious solution for
big-step
Exceptions small-step gets stuck on exceptional subexpressions
like 1/0; big-step evaluation of every expression
containing 1/0 is undefined

Evaluation order reasonably easy to define in small-step; more
involved for big-step

Concurrency easy in small-step; non-obvious solution for big-step

But

m big-step is close to an interpreter (i.e., more intuitive, close to
implementation)

m some properties are easier to prove for big-step

Thiemann POPL 2018-04-16 28 / 28

	Prelude
	Syntax
	Concrete sytax
	Abstract syntax

	Semantics

