Principles of Programming Languages
Lecture 02 While

Albert-Ludwigs-Universitat Freiburg

FREIBURG

2
=

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

23 Apr 2018

The While Programming Language

m Core imperative programming language
m Part of most programming languages

m Imperative

H program state
m statement: state transformation

Thiemann POPL

2018-04-23

2/ 47

2
=

O
o
2
Q
L
oz
T8

Syntax of WHILE

Expressions

e = x|ete]...
Statements
s = x:=e
| skip
| s3s
| if e then s elses
| whileedos
Thiemann POPL

assignment
empty statement
sequence
conditional
repetition

2018-04-23

3/ 47

2
=

O
o
2
Q
L
oz
T8

Semantics

Modeling the state

0> Store = Var < Val
y> Val = Z

m Variables contain integers
m Some variables may not be defined

= store is a partial function from variables to values

Thiemann POPL

2018-04-23

4/ a7

2
=

O
o
2
Q
L
oz
T8

Big-Step Semantics

m Two syntactic categories e and s with different outcomes
= two evaluation relations needed

Evaluation of expressions

m input: current state and expression
m output: value of expression

m need relation 0,e — y

Evaluation of statements

m input: current state and statement
m output: state after executing statement

m need relation 0,5 < o’

Thiemann POPL 2018-04-23 5/ 47

2
=

O
o
2
Q
L
oz
T8

Big-Step Evaluation of Expressions

0,61 — m

o,x < o(x)

g,€ — N2

if o(x) defined

Thiemann

o,e1+e —m

fm=m+mecZ

POPL 2018-04-23

6/ 47

2
=

O
o
2
Q
L
oz
T8

Big-Step Execution of Statements |

Assign

o,e<n Skip

o,s8kip — o

o, x:=e < o[x — n|

Seq
/ / "
0,51 — 0 0,5 —0

0,51:;5 — O‘”

Thiemann POPL 2018-04-23

7/ 47

2
=

O
o
2
Q
L
oz
T8

Big-Step Execution of Statements ||

IfTrue
o,e <= n 0,51 = 0

ifn#0
0,1f e then 51 else sp — o’

IfFalse
og,e =0 0,5 <0

o,1f e then s; else sp — o'

Thiemann POPL 2018-04-23

8/ 47

2
=

O
o
2
Q
L
oz
T8

Big-Step Execution of Statements Il

WhileTrue
o,e = n O',S‘—)O'/ a’,whileed05€—>0” .
: - if n#0
o,while edo s = o
WhileFalse
og,e =0

o,while edo s — o

Thiemann POPL 2018-04-23 9 / 47

2
=

O
o
2
Q
L
oz
T8

Small-Step Semantics

Reduction of expressions

m (machine) state: current state and expression

m need transition relation: o,e — €’ (no output state needed)

Reduction of Statements

m (machine) state: current state and statement

m but there is no statement in the last step

m two transition relations

m 0,5 — 0,5 if there is a nested step to take
m 0,5 — o if there is only one step

Thiemann POPL 2018-04-23 10 / 47

2
=

O
o
2
Q
L
oz
T8

Small-Step Reduction of Expressions

EVar
o,x — o(x) if o(x) defined

EOp

o,nm+n—m wherem=n+mecZ
EOpL EOpR

o,e1 — €] 0,6 — €

oe1+e— e +e o,n+e —n+e

Thiemann POPL 2018-04-23

11 / 47

2
=

O
o
2
Q
L
oz
T8

Small-Step Reduction of Statements |

SAssignStep

SAssign o, e e

o, x:=n — o[x — n|

o, x:=e — o, x:=¢€

SSkip
o,8kip — 0

SSeqlL SSeqStep
U,Sl—>0'/ 0',51—)0'/,51

0,51,52 —>0/,52 0,51,52 —>0/,S{;S2

Thiemann POPL 2018-04-23

12 / 47

2
=

O
o
2
Q
L
oz
T8

Small-Step Reduction of Statements |l

SlfTrue
0,if n then s; else s, —> 0,51 ifn#0

SlfFalse
0,if 0 then s; else sp — 0, %

SIfStep
o,e — €

0,if e then s; else s, — 0,if € then s; else s

Thiemann POPL 2018-04-23

13 / 47

2
=

O
o
2
Q
L
oz
T8

Small-Step Reduction of Statements IlI

SWhile
o,while e do s —» 0,1if e then (s;while e do s) else skip

m while is handled by unfolding

Thiemann POPL 2018-04-23

14 / 47

2
=

O
o
2
Q
L
oz
T8

Interlude: Exceptions (Big-Step)

Thiemann POPL

2018-04-23

15 / 47

2
=

O
o
2
Q
L
oz
T8

Exceptions

If there is an exception (e.g. division by zero)

m Small step semantics: reduction gets stuck

m Big step semantics: so far undefined

Solution

m Small step: Judgment with combined result

m Big step: Separate judgments for normal result and
exceptional results

Thiemann POPL 2018-04-23

16 / 47

UNI

FREIBURG

Big-Step Exceptions: Separate Judgments

ri=divo | ...

Two Judgments

normal evaluation e < y as before

exceptional evaluation e {} r (very schematic definition)

€1 — m

e —0

er/e f div0o

€1 — m ezﬂr

Thiemann

el-e i r

et r et r

ei-ex I r et/efr

€1 —> m efr
et/eafr

POPL 2018-04-23

17 / 47

2
=

O
o
2
Q
L
oz
T8

Results

For each expression e

B E— N, for some n or

m e) r, for some r.

Thiemann POPL 2018-04-23 18 / 47

2
=

O
o
2
Q
L
oz
T8

Exceptions for Statements

m Similar approach: judgments 0,5 < ¢’ and 0,5 1} o/, r.

m But 0, s may not terminate, so we do not have a result
corresponding to expressions.

Thiemann POPL 2018-04-23

19 / 47

2
=

O
o
2
Q
L
oz
T8

Language Extension: Catch and Throw Exceptions

s:u=---|throw r | try s catch r then s

g, 51 — o

o,throw r | o, r ;
o,try s; catch r then s — o

/ / "
o,s1o,r 0,8 0

o,try s; catch r then s — "

m what else could happen?

Thiemann POPL 2018-04-23

20 / 47

2
=

O
o
2
Q
L
oz
T8

Language Extension: Catch and Throw Exceptions |l

o
[
=
-
zl.u
o

Uncaught exception

ostha,r

/
. where r £ r

o,try s catch r then s;) o/, r

Exception in exception handler

/ !
o5 fhor o, s o, r

o,try s; catch r then s;) o’ r/

Thiemann POPL 2018-04-23 21 / 47

WHILE with Procedures

Thiemann

POPL

2018-04-23

22 / 47

2
=

O
o
2
Q
L
oz
T8

WHILE with Procedures

Programs
p = s
] proc f(X)s; p
Statements (ext)
s u=

()

m Useful extension?

main program
procedure definition

procedure call

Thiemann POPL 2018-04-23

23 / 47

2
=

O
o
2
Q
L
oz
T8

Properties

o
[
=
-
zl.u
o

A procedure

can take parameters

cannot return a value

can modify fixed (global) variables
cannot modify arbitrary variables

can be called recursively

cannot be nested in another procedure

The other alternatives

also make sense — stay tuned

Thiemann POPL 2018-04-23 24 / 47

Big-Step Modeling

Modeling Procedure Calls

m procedure parameters are values of expressions

m stored in local variables, i.e., new variables for each
procedure call

= store is now structured into local store and global store

= use indirection to implement

Thiemann POPL 2018-04-23 25 / 47

2
=

O
o
2
Q
L
oz
T8

Parameter passing

Here: Call-by-value

m parameter expressions are evaluated before the procedure call

Alternative: Call-by-name

m parameter expressions are passed unevaluated

Alternative: Call-by-reference

m parameters must be variable names

m assignments to parameters in the procedure are visible at the
call site

Thiemann POPL 2018-04-23 26 / 47

UNI

FREIBURG

The Store Model

1> Memory = Address — Val
o> Store = Var < Address

Big-step evaluation of expressions

o(x)=a u(a) =n
W,o = x<—=n

w0 n<—n

u,al—e1C—>n1 ,u,al—e2<—>n2

where n = n; — n»
W, o= ej-ex —n

Thiemann POPL 2018-04-23 27 / 47

2
=

O
o
2
Q
L
oz
T8

Big-step execution of statements

Procedure call

SCall-Provisional
p,oc-e—y procf(X)se€p
anNdom(p) =10 pla=yl,olx—=al ks u

w,o = f(e) — u

m Judgment adapted to indirection: ju, o s < i
m memory p changes and is threaded through computation
m store (environment) o propagated to the leaves
m o updated for duration of procedure call

Thiemann POPL 2018-04-23

28 / 47

2
=

O
o
2
Q
L
oz
T8

Passing Parameters by Reference

m The previous rule SCall implemented call-by-value

m To implement call-by-reference
m actual parameters must be variable names
m pass the address of the variable instead of its value
m no new variables allocated

SCallRef-Provisional
o(z)=3 proc f(&x)s€p p,o[x—=alks—u

!/

p,o b f(Z) =y

Thiemann POPL 2018-04-23

29 / 47

2
=

O
o
2
Q
L
oz
T8

Scope and Visibility

Thiemann

POPL

2018-04-23

30 / 47

2
=

O
o
2
Q
L
oz
T8

Scope and Visibility

Scope of identifier x

m part of program where x refers to some entity (variable,
procedure, type, ...)

m static (lexical) scope: program structure determines the scope
— next enclosing definition is referred to

m dynamic scope: program execution determines the scope —
last executed definition is referred to

Thiemann POPL 2018-04-23 31 / 47

2
=

O
o
2
Q
L
oz
T8

Example: Scope in WHILE with Procedures

m global scope
m all variables in the main program

m variables used in procedures, but not declared as parameters

m procedure scope
m variables declared as parameters

m lexical scope desired: identifier x in procedure p(X)s refers to

m parameter x, if present in X;
m global variable x, otherwise.
m rule SCall

m defines scoping by manipulation of environment o
m global visibility of procedure names p (enables mutually
recursive procedure calls)

Thiemann POPL 2018-04-23

32 / 47

2
=

O
o
2
Q
L
oz
T8

Static Scope vs Dynamic Scope
A While-Proc program

(&)
[
=
-
zl.u
o

p(x, y){a(y)} (1)
gy){z =x+y} (2)
x 1= 42; (3)
p(17,4) (4)

static scope terminates with z = 46

dynamic scope (hypothetical) in g, the last executed definition of
x is setting the parameter x of p to 17. Hence,
z =21 in the end.

m The first Lisp interpreter accidentally implemented dynamic
scope.

m Emacs Lisp uses dynamic scope.
m SCall-Provisional implements dynamic scope!

Thiemann POPL 2018-04-23 33 / 47

Visibility

m A variable may be in scope, but not visible

m |t can be shadowed by a closer redefinition

Example

m In While-Proc, global variables can be shadowed by
parameters

m Shadowing is purely lexical as shown in Example (1)

Thiemann POPL 2018-04-23

34 / 47

2
=

O
o
2
Q
L
oz
T8

Extensions of While-Proc

Thiemann

POPL

2018-04-23

35 / 47

2
=

O
o
2
Q
L
oz
T8

Extension: Local Variables

m Parameters in While-Proc are assignable, but that's not a
good programming style
m Introduce local variables

m Local variables are freshly allocated for each procedure call,
they can be accessed during the call, and are unavailable
afterwards

m Their scope is the body of the procedure

Revised abstract syntax of programs
p = s main program
| proc f(x){var z;s}; p procedure definition

Thiemann POPL 2018-04-23

36 / 47

2
=

O
o
2
Q
L
oz
T8

Implementation: Local Variables

(&)
[
=
-
zl.u
o

m only procedure call rule affected

SCallLocal-Provisional
p,okFe—=y
proc f(X){var z;s} € p 3, bnNdom(u) =10
pla=y, b 0],0[x—a,z bl sy

p,0 = f(€) = 4

Thiemann POPL 2018-04-23 37 / 47

Terminology: Activation Block

m Management of variable storage in memory p is key part of
rules for procedure call

m A sequence of active procedure calls gives rise to an
environment of this form

po [ar = yi] [@2 7 y2] - - - [an = vl
—_—— N——

call to f1 call to f» call to f,,

m Each part [a;— yj] is an activation block for procedure f;,
which consists of

m values of the parameters
m values of the local variables
m (other local structures; on a machine: return address)

m It describes all local information needed to execute the
procedure call and to return from it.

m Typically allocated on the machine stack.

Thiemann POPL 2018-04-23

38 / 47

2
=

O
o
2
Q
L
oz
T8

Extension: Nested Procedures

m In many languages, procedures, function, methods can be
nested, that is, a procedure f can have local procedure
declarations whose scope is just the body of

m A block is a scope unit consisting of

m variable declarations,
m procedure declarations, and
m a statement

m The main program is just the top-level block

blocks
b = wvarzs block
| proc f(X){b}; b procedure definition
Thiemann POPL 2018-04-23

39 / 47

2
=

O
o
2
Q
L
oz
T8

Modeling Nested Procedures and Blocks

m Now procedure declarations are lexically scoped, too!
m Need to adjust access to procedure declarations

m Requires a procedure environment 7 which maps procedure
names to procedure declarations

BProcDef
w, o, w[f + proc f(X){b1}] F by — i

w, o, proc f(xX){b1}; b — i’

BExec
andom(p)=0 pla—0,clz—al, ks u

w,o, 7 var z;s <y

Thiemann POPL 2018-04-23

40 / 47

2
=

O
o
2
Q
L
oz
T8

Modeling Nested Procedures and Blocks |l

(&)
[
=
-
zl.u
o

SCallBlock-Provisional
p,o-€—=y m(f) = proc f(x){b}
andom(p)=0 pla—=yl,olx—=al,tF- b=y

w,o,m k- f(e) = p

Thiemann POPL 2018-04-23 41 / 47

Nested Procedures and Blocks

Consequences of the rules

m Variables and procedures live in different namespaces
m variables are governed by environment o
m procedures by environment 7

m Inner declarations shadow enclosing declarations

m Nested procedures can access

m procedures at the same level or higher up
m variables ...

Thiemann POPL 2018-04-23 42 / 47

2
=

O
o
2
Q
L
oz
T8

A Pitfall

(&)
[
=
-
zl.u
o

proc f(x){g(42)}
proc g(y){x := 42}
x :=0;f(0)

m What is the value of global variable x in the end?

Thiemann POPL 2018-04-23 43 / 47

A Pitfall

(&)
[
=
-
zl.u
o

proc f(x){g(42)}
proc g(y){x := 42}
x :=0;f(0)

m What is the value of global variable x in the end?
m Initial call £(0):

[a — 0][a1 — 0],
[x — a][x — a1] F g(42)...

Thiemann POPL 2018-04-23 43 / 47

A Pitfall

(&)
[
=
-
zl.u
o

proc f(x){g(42)}
proc g(y){x := 42}
x :=0;f(0)

m What is the value of global variable x in the end?
m Initial call £(0):

[a — 0][a1 — 0],
[x — a][x — a1] F g(42)...

m Next call g(42):

[a — 0][a1 — 0][a2 — 42],
[x = a|[x — ai1]ly — a2] F x:=42 < [a+ 0][a; — 42][a2 — 42]

Thiemann POPL 2018-04-23 43 / 47

A Pitfall

(&)
[
=
-
zl.u
o

proc f(x){g(42)}
proc g(y){x := 42}

x :=0;f(0)
m What is the value of global variable x in the end?
m Initial call £(0):
[a — 0][a1 — 0],
[x — a][x — a1] F g(42)...
m Next call g(42):

[a — 0][a1 — 0][a2 — 42],
[x = a|[x — ai1]ly — a2] F x:=42 < [a+ 0][a; — 42][a2 — 42]

Updates f's parameter x at a; instead of the global variable x
at ap: dynamic scope!

Thiemann POPL 2018-04-23 43 / 47

What's Wrong?

m dynamic scope

m solution to implement lexical scope: each procedure needs to
remember the variable environment in which it was created

m easiest modeling: restructure AST of blocks

blocks
b = var z, proc f(x){b}; s block

Thiemann POPL 2018-04-23 44 / 47

2
=

O
o
2
Q
L
oz
T8

Corrected block rules

(&)
[
=
-
zl.u
o

Block
andom(p)=0 o =olz+ 3
7' =n[f — o, 7, (X){b}]
pla— 0,0’ 7' F sy

p, 0,7 var z; proc f(X){b}; s < 1/

SCallBlock
ot e—=y 7(f) =o', 7', (x){b}
andom(p)=0 pla—=yl,d[x—=a, 7 b=y

o,k f(e) = pf

Thiemann POPL 2018-04-23 45 / 47

Proper Implementation of Lexical Scope

m Environments o and 7 implement scope chains.

m The environment ¢’ stored in the procedure map always
contains the variable environment of the block in which the
procedure was declared.

m The environment 7’ in the procedure map always contains the
procedure environment of the block in which the procedure
was declared.

m The entry in the procedure environment is recursive to enable
mutually recursive procedure calls across nested procedures.

Thiemann POPL 2018-04-23 46 / 47

2
=

O
o
2
Q
L
oz
T8

Scope Chain and Activation Blocks

var X,

proc p(x){...q()... };
proc q(y){--- };

(&)
[
=
-
zl.u
o

...p(42)...
scope chain activation blocks
o0 = [x — ao] to =[ao — ...]
p()

o\ = og[x — a1] p = prolar > -]

q()

Mzzul[azH...]

Oy = Uo[y —> 32]

Thiemann POPL 2018-04-23 47 | 47

	The While Programming Language
	Big-Step Semantics
	Small-Step Semantics

	Interlude: Exceptions (Big-Step)
	WHILE with Procedures
	Scope and Visibility
	Extensions of While-Proc

