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Lambda Calculus

Foundational core calculus
Basis for functional programming
Turing complete
Due to Alonzo Church (1936)
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Syntax of Lambda Calculus

e ::= x variable
| (λx .e) (lambda) abstraction
| (e e) (function) application

x ∈ Var a denumerable set
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Remarks on Syntax

Application is left-associative.

e1 e2 e3 ≡ ((e1 e2) e3)

The body of an abstraction reaches as far to the right as possible.

λx.e1 e2 ≡ (λx.(e1 e2))

λxy.e stands for λx.λy.e (analogously for more arguments).
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Definition: Free and Bound Variables

The functions FV(),BV() : Exp→ P(Var) return the set of free or bound variables of
a lambda term, respectively.

FV(x) := {x}
FV(e0 e1) := FV(e0) ∪ FV(e1)
FV(λx.e) := FV(e) \ {x}

BV(x) := ∅
BV(e0 e1) := BV(e0) ∪ BV(e1)
BV(λx.e) := BV(e) ∪ {x}

Furthermore, Var(e) := FV(e) ∪ BV(e) is the set of variables of e. A lambda term e is
closed (e is a combinator) iff FV(e) = ∅.
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Examples: Free and Bound Variables

FV(λx.x) = ∅
BV(λx.x) = {x}
FV(λx.y) = {y}

FV((λx.x) y) = {y}
BV((λx.x) y) = {x}
BV((λx.x) x) = {x}
FV((λx.x) x) = {x} !
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Reduction Semantics

Reduction relation e −→ e

Beta
(λx .e1) e2 −→ e1[x 7→ e2]

CongLam
e −→ e ′

λx .e −→ λx .e ′

CongAppL
e1 −→ e ′1

e1 e2 −→ e ′1 e2

CongAppR
e2 −→ e ′2

e1 e2 −→ e1 e ′2

Beta relies on substitution e1[x 7→ e2]:
“substitute e2 for x in e1”
Substitution is tricky: it must not destroy lexical scope
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Substitution: What can go wrong

respect binding: (λx.x)[x 7→ f ] = (λx.x)

avoid capture: (λx.y)[y 7→ x ]

= λx.x would be WRONG
= λx ′.x is correct

must happen generally for (λx.e)[y 7→ f ] if x 6= y and x ∈ FV(f )
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Definition: Capture Avoiding Substitution

For e, f ∈ E , define e[x ′ 7→ f ] inductively by:

x [x ′ 7→ f ] =

{
f if x = x ′

x if x 6= x ′

(λx.e)[x ′ 7→ f ] =

{
λx.e if x = x ′

λx ′′.(e[x 7→ x ′′][x ′ 7→ f ]) if x 6= x ′, x ′′ /∈ FV(e) ∪ FV(f ) ∪ {x ′}
(e0 e1)[x

′ 7→ f ] = (e0[x
′ 7→ f ]) (e1[x

′ 7→ f ])
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Further Reduction Rules

Reduction Relation

Alpha
λx.e −→ λy .e[x 7→ y ] y 6∈ FV(e)

Eta
(λx.e x) −→ e x 6∈ FV(e)

Remarks

Alpha conversion is often used implicitly to keep free and bound variables apart
Eta reduction is rarely used to describe execution
Left hand side of a rule is called redex
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More Relations Based on Reduction

Multi-step reduction aka reflexive transitive closure

e
∗−→ e

e −→ e ′ e ′
∗−→ e ′′

e
∗−→ e ′′

Equality aka symmetric reflexive transitive closure

e −→ e ′

e ←→ e ′
e ′ −→ e

e ←→ e ′

e
∗←→ e

e ←→ e ′ e ′
∗←→ e ′′

e
∗←→ e ′′
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More Remarks

A β-reduction step corresponds closely to the intuitive notion of function
application.
Lambda terms will be considered equivalent if only the names of their bound
variables differ (i.e., if they are α-convertible).

Thiemann POPL 2018-05-07 14 / 45



Definition: Normal Form

Let e be a lambda term. A lambda term e ′ is a normal
form of e iff e

∗−→β e ′ and if there is no e ′′ with
e ′ −→β e ′′.
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Remarks on Normal Forms

Lambda terms with equivalent (equal up to α reduction) normal forms exhibit the
same behavior.
Some lambda terms do not have a normal form:

(λx .x x)(λx .x x) −→β (λx .x x)(λx .x x)
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Beta Reduction is a Sensible Notion of Computation

The Church-Rosser Theorem
Beta reduction has the Church-Rosser property:

e1 e2

e ′

∗
β

∗
β

∗
β

In words: For all lambda terms e1, e2 with e1
∗↔β e2, there is a lambda term e ′ with

e1
∗→β e ′ and e2

∗→β e ′.

Thiemann POPL 2018-05-07 17 / 45



Corollary: Uniqueness of Normal Form

A lambda term e has at most one normal form up to
Alpha reduction.
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Desiderata

At first glance the lambda calculus lacks fundamental ingredients of a programming
language:

booleans and conditional,
pairs / tuples / records,
numbers, and
recursion / while.

But all of them can be programmed, which makes lamdba calculus Turing equivalent.
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Booleans and Conditionals

Conditionals have the form if e then e1 else e2: Depending on the (boolean)
result of evaluating e, the conditional “selects” either e1 or e2.

In lambda calculus booleans have an “active” interpretation that performs the
selection by itself.
Thus, true is a lambda term that selects the first of two arguments, and false is
one that selects the second:

true = λxy .x

false = λxy .y

The conditional is the identity:

ite = λbxy .b x y

Thiemann POPL 2018-05-07 21 / 45



Booleans and Conditionals

Conditionals have the form if e then e1 else e2: Depending on the (boolean)
result of evaluating e, the conditional “selects” either e1 or e2.
In lambda calculus booleans have an “active” interpretation that performs the
selection by itself.

Thus, true is a lambda term that selects the first of two arguments, and false is
one that selects the second:

true = λxy .x

false = λxy .y

The conditional is the identity:

ite = λbxy .b x y

Thiemann POPL 2018-05-07 21 / 45



Booleans and Conditionals

Conditionals have the form if e then e1 else e2: Depending on the (boolean)
result of evaluating e, the conditional “selects” either e1 or e2.
In lambda calculus booleans have an “active” interpretation that performs the
selection by itself.
Thus, true is a lambda term that selects the first of two arguments, and false is
one that selects the second:

true = λxy .x

false = λxy .y

The conditional is the identity:

ite = λbxy .b x y

Thiemann POPL 2018-05-07 21 / 45



Booleans and Conditionals

Conditionals have the form if e then e1 else e2: Depending on the (boolean)
result of evaluating e, the conditional “selects” either e1 or e2.
In lambda calculus booleans have an “active” interpretation that performs the
selection by itself.
Thus, true is a lambda term that selects the first of two arguments, and false is
one that selects the second:

true = λxy .x

false = λxy .y

The conditional is the identity:

ite = λbxy .b x y

Thiemann POPL 2018-05-07 21 / 45



Example Conditional

if true e1 e2 = (λbxy .b x y) true e1 e2
→β (λxy .true x y) e1 e2
→2

β true e1 e2
= (λxy .x) e1 e2
→β (λy .e1) e2
→β e1
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Numbers

Natural numbers can be represented by Church numerals. The Church numeral dne
of a natural number n is a function that takes two parameters, a function f and some
x , and applies f n-times to x . (Hence, d0e is the identity.)

dne = λf λx .f (n)(x)

where

f (n)(e) =

{
e if n = 0
f (f (n−1)(e)) otherwise

Remark
dne is a normal form!
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Successor and Predecessor

The successor function adds an application:

succ = λn.λf λx .n f (f x)

The predecessor is somewhat more complicated:

pred = λx .λy .λz .x (λp.λq.q (p y)) ((λx .λy .x) z) (λx .x)

(A proof that it actually does subtract one from a Church numeral is a worthwhile
exercise.)
Testing for zero

zero? = λn.n (λx .false) true
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Example Calculation

zero? d0e = (λn.n (λx .false) true) d0e
→β d0e (λx .false) true
= (λf .λx .x) (λx .false) true
→β (λx .x) true
→β true
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Recursion

Fixpoint Theorem

Every lambda term has a fixpoint.
That is, for every lambda term f there is a lambda term e with f e

∗↔β e.

Proof:
Choose e := Y f with

Y := λf .(λx .f (x x)) (λx .f (x x)).

Then:
Y F = (λf .(λx .f (x x)) (λx .f (x x)) F

→β (λx .F (x x)) (λx .F (x x))
→β F ((λx .F (x x)) (λx .F (x x)))
←β F ((λf .(λx .f (x x)) (λx .f (x x))) F )
= F (Y F )
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Example Fixpoint Calculation

As an example, consider expressing the recursive definition of the factorial function

fac n = if (zero? n) d1e times n (fac (pred n))

where times and pred are multiplication and predecessor functions. An equivalent
non-recursive definition can be found using the fixpoint combinator.

fac ′ = Y (λf n.if (zero? n) d1e times n (f (pred n)))
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Pairs

A pair can be encoded as a function that takes a projection function and applies it to
the components of the pair. Hence, the selectors take a pair and apply it to the
appropriate projection function.

pair = λxyt.t x y
fst = λp.p λxy .x
snd = λp.p λxy .y

Pairs can be used to systematically derive a subtraction function that is “obviously”
correct.
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Weak Head-Normal Form

The Problem with Normal Forms

difficult to compute efficiently
full subsitution is complicated and expensive
success depends on evaluation order

In practice, lambda terms are evaluated to the point where they are abstractions; it is
not necessary to evaluate anything “inside the lambda.”
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Evaluation Strategies

Definition: Weak Head-Normal Form (WHNF)

An abstraction is a value (or weak head-normal form).
Any other term is a non-value (or expression juxtaposition).

Remark
A term need not have a WHNF: (λx.x x) (λx.x x)

Definition
An evaluation strategy is an algorithm to reduce a lambda term to its weak
head-normal form (if one exists).
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Contexts

Evaluation strategy = algorithm that finds the next (beta) redex.
Can be specified succinctly using evaluation contexts.
Evaluation contexts are special contexts.

Definition: Context
A context is a lambda term with a hole.

C ::= [ ] | λx.C | C e | e C
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Hole Filling

Definition
Given a context C and a term f , the hole filling operation C [f ] is defined by

[ ][f ] = f

(λx.C )[f ] = λx.C [f ]

(C e)[f ] = (C [f ]) e

(e C )[f ] = e (C [f ])

Examples

(λx.[ ])[λy.y ] = λx.λy.y like substitution
(λx.[ ])[x ] = λx.x unlike: variable in filling term may be captured
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Evaluation Contexts

Given a reduction as a pair of redex (lhs) and contractum (rhs) (e.g., beta reduction)

(λx.e1) e2 −→ e1[x 7→ e2]

define a grammar of evaluation contexts E and extend reduction by closing under
contexts described by E :

e −→ e ′

E [e] −→ E [e ′]

Different evaluation contexts describe different evaluation strategies.
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Evaluation Contexts: Examples

Call-by-name Lambda Calculus

Reduction relation: full beta

(λx.e1) e2 −→ e1[x 7→ e2]

Evaluation contexts

En ::= [ ] | En e
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Evaluation Contexts: Examples

Call-by-name Lambda Calculus

Reduction relation: beta value

v ::= λx.e grammar of values

(λx.e) v −→ e[x 7→ v ] argument must be value

Evaluation contexts

Ev ::= [ ] | Ev e | v Ev
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Deterministic Evaluation

Unique Decomposition

Suppose that E is a language of evaluation contexts.
If e is a term, then either

1 e is a value
2 e ≡ E [r ] for some unique evaluation context E and redex r

3 e ≡ E [f ] for some unique evaluation context E and irreducible term f

Remarks

Would like to stay with (1) and (2).
Restriction to closed terms removed case E [x ] from (3).
Remaining cases in (3) can be avoided by typing.
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Lambda Calculus with Constants

Computing with Church numerals and the fixpoint combinator is unrealistic
Real use efficient implementations of datatypes and recursion
One way of modeling these implementations: add constants c!
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Lambda Calculus with Constants
Syntax

Add infinitely many constants c to the syntax

e ::= c | x | λx.e | e e

Reduction
Call-by-value = beta-value with evaluation contexts Ev

v ::= c | λx.e constants are values (WHNF)

Behavior of constants defined by δ reductions

c v −→δ δ
c(v) if δc defined

where each δc : Val ↪→ Val is a partial function on values.
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Lambda Calculus with Constants (Example)

Applied Lambda Calculus with Integers and Addition

Constants dne for each integer n (without reduction rules)
A constant + and constants +n for each integer

Reduction rules

δ+dne = +n

δ+ndme = dn +me

The set of values
v ::= dne | + | +n | λx.e
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A New Source of Errors

Stuck Terms
In an applied lambda calculus, there are usually terms which cannot be evaluated
further although they are not in weak head-normal form. These terms are called stuck
terms. They are regarded as execution errors because they amount to
misinterpretation of data.

Example

d5e v number used as a function
+ (λx .e) v operand out of domain
if (λx .e) then e1 else e2 type mismatch
if d42e then e1 else e2 type mismatch
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Avoiding Misinterpretation Errors by Typing

Dynamic Typing

the compiler generates code that tests all operands before it executes an operation
every value must be equipped with sufficient type information at run time

Static Typing

impose a typing discipline that rules out programs that may lead to execution
errors
requires design and implementation of a type checker
no run-time overhead
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Strong Typing vs Weak Typing

Strong Typing

In a strongly typed language, each value has one designated type and only operations
for this particular type apply to the value.

Weak Typing

Weakly typed languages have a notion of conversion (or coercion) that silently
converts unsuitable operands into arguments suitable for an operation.
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Combining Concepts

A language can be strongly typed with a dynamic typing discipline (e.g., Racket,
Python).
It can be weakly typed with a static typing discipline (old versions of the C
language, PL/1).
Popular combinations are either strong, static typing (Haskell, ML) or weak,
dynamic typing (JavaScript).
Java is special because a strong, static type discipline is meant to imply that no
type mismatches can occur at runtime. However, this is not true in Java due to
the presence (and wide use) of type casts in the language.
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