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m Starting point: simply typed lambda calculus
m basic type constructions: products and sums

m advanced type constructions: trees (aka algebraic datatypes)

Thiemann POPL 2018-05-16 3/39



Defining a Type System
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Type systems are customarily defined using deduction systems (i.e., a system of
axioms and rules defining a relation).

The relation is phrased as a typing judgment, which relates a typing environment, T,
and an expression, e, to a type, 7.

MNe:7
A typing environment relates free variables in e to types.

Fre=0|x:r
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Simply-Typed Lambda Calculus

Syntax of expressions (as before)
Exproe:=x|Axe|lee|n|ete|if eece
Syntax of types
Types7i=a|7— 7| Int

where
m « is a type variable, drawn from a denumerable set TVar,
m Int is a type constant (only applied lambda calculus), and

"

m 7 — 7" is the type of functions that map values of type 7’ to values of type 7.
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Typing Rules
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MNx)=r Mx:7kFe:7" FTFe:7 =7 r-e:7
Nex:7 FrExx.e: 7 =7 lFee:r

[+ e:Int M-e€':Int

[+ n:Int ;
Fete :Int

[F e : Int lFe:T lFes:T

lFif et e e3: 7
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Example: A Type Derivation
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Fory:akF (Ax.x)y:a
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Properties of Simple Typing
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If '+ e:7, then FV(e) C dom(T).
(Weakening) If I,x : 7 e: 7" and x ¢ FV(e), then T e : 7.

(Substitution) If I, x" : 7'+ e:7and "€ : 7 and TUT" is a well-formed
typing environment, then TU T - e[x’ +— €] : 7.
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Connecting Types and Semantics
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In the beginning . ..

B types are just syntax

m typing is just some relation between expressions and types
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Connecting Types and Semantics
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In the beginning . ..

B types are just syntax

m typing is just some relation between expressions and types

Connect Types and Semantics

to show that
m types describe execution and

m type avoid misinterpretation of data (type mismatches)
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Key Results
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(Type Preservation)

frte:7ande— €' thenTHe' : 7.
(Progress)

If T+ e: 7, then exactly one of the following holds.

e is a value.
There is some €’ such that e — €’.
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The Holy Grail
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Type Soundness Theorem

If ) e : 7, then exactly one of the following is true.
m There exists a value v such that e —s vand O F v : 7.

m For each € such that e — €’ there exists €” such that e — €.
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A Surprising Property of the Simply-Typed Lambda Calculus
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m Every simply-typed term has a normal form.

Strong Normalization

Suppose that - e : 7.
Then there exists a term €’ with e —s €’ such that €’ is in normal form.
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Recursion
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m Can add a fixpoint operator without breaking the typing properties

m (Strong normalization is lost, though)

Syntax and Reduction

en=---|fix fix e — e (fix e)
Typing
N-fix : (1 —>7)—>71
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Example
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The factorial function, again.
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Product and Record Types
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m A product type is the type of pairs or n-tuples of values where access to the
components is by position. (cf. tuples in Python)

m A record type is the type of n-tuples of values where access to the components
is by name. (cf. structs in C)

Each component may have a different type

The number of components and their names are fixed
Operations

m Construction (introduction) of a tuple/record
m Selection (elimination) of a component

Thiemann POPL 2018-05-16 17 / 39



Examples: Python Tuples

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like
lists. The differences between tuples and lists are, the tuples cannot be changed unlike
lists and tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally
you can put these comma-separated values between parentheses also. For example —

tupl = ('physics’', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5 );
tup3 — ||a|| ||b|| ||C|| lldll.

The empty tuple is written as two parentheses containing nothing —

tupl = ();

Source: https://www.tutorialspoint.com/python/python_tuples.htm
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https://www.tutorialspoint.com/python/python_tuples.htm

Python Tuples (Cont)

Accessing Values in Tuples To access values in tuple, use the square brackets for slicing
along with the index or indices to obtain value available at that index. For example —

tupl = ('physics’', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7 );

print "tupl[O0]:.", tupl[O];

print "tup2[1:5]:,", tup2[1:5];

Source: https://www.tutorialspoint.com/python/python_tuples.htm
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https://www.tutorialspoint.com/python/python_tuples.htm

Example: C Structs

Defining a Structure

To define a structure, you must use the struct statement. The struct statement
defines a new data type, with more than one member. [...] each member definition is
a normal variable definition, such as int i; or float f; or any other valid variable
definition. At the end of the structure's definition, before the final semicolon, you can
specify one or more structure variables but it is optional. Here is the way you would
declare the Book structure

struct Books {

char title[50];
char author[50];
char subject[100];
int book id;
} book;
Thiemann POPL
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https://www.tutorialspoint.com/cprogramming/c_structures.htm

C Structs (Cont)
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Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The

member access operator is coded as a period between the structure variable name and
the structure member that we wish to access.

/x print Bookl info x/

printf( "Bookylutitley: %s\n", Bookl.title);
printf( "Bookylyauthory: %s\n", Bookl.author);
printf( "Bookylysubjecty: %s\n", Bookl.subject);
printf( "Bookylybook idy: %d\n", Bookl.book id);

Source https://www.tutorialspoint.com/cprogramming/c_structures.htm
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Products/Tuples
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Syntax

Tuple construction and projection

ex=---|(e,...) | mi(e) i€eN

Tu= | TX o XT
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Products/Tuples
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Syntax

Tuple construction and projection

ex=---|(e,...) | mi(e) i€eN

Tu= | TX o XT

Typing rules
[Fe:m MEe,: 7 lFe:m X~ X1, |
ie{l,...,n}
ME(er,...,en) 71 X+ XTp emi(e):m
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25
=Y
Call by name
(e1,-..,en) is a value; no new evaluation contexts required
7T,-(e1,...,e,-,...) — €

Call by value

If vi,..., v, are values, then (vq,...,v,) is a value.
7T,'(V1,...,V,',...) — V;
Evaluation contexts

E i=---[(v,E @)
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Special Case: n = 0 the Unit Type
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Unit construction, no elimination, no reduction

ex=---1() T u=---|unit
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Special Case: n = 0 the Unit Type
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Unit construction, no elimination, no reduction

Typing rules
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Records
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Record construction and selection

ex=---|{h=-ey,...}|el | € Label
o= |{h:7,...}
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Records
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Syntax

Record construction and selection

ex=---|{h=-ey,...}|el | € Label
Tuo=-|{h:m,...}
Typing rules
Ml-e:m M=e,: 7, Fte:{h:7,....0h: 7o}
FrE{h=e,....0n=ep) :{h:m1,....0h: 7} MN=el: 7
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Variant and Sum Types
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m A sum type or variant type is the disjoint, tagged union of two or more types
m Cf. enums in Java and Rust

m Dual of product types
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Example: enum in Rust

enum Message {
Quit ,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),
}

This enum has four variants with different types:

m Quit has no data associated with it at all.

m Move includes an anonymous struct inside it.
m Write includes a single String.

m ChangeColor includes three i32 values.

Source https://doc.rust-lang.org/book/second-edition/ch06-01-defining-an-enum.html
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Enum matching in Rust
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enum Coin {
Penny,
Nickel ,
Dime,
Quarter

}

fn value in_cents(coin: Coin) —> u32 {
match coin {
Coin::Penny = 1,
Coin:: Nickel = 5,
Coin :: Dime => 10,
Coin:: Quarter => 25,
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Variants

Variant construction and match (case)
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en=---|l(e) |match e {h(x1) = e1,...,Ih(xn) = en} | € Label
To=---| h(m)+ -+ In(7n)
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Variants

Syntax

Variant construction and match (case)

en=---|l(e) |match e {h(x1) = e1,...,Ih(xn) = en} | € Label
Tou=- | h(m)+ -+ In(7h)

Typing rules

NlFe:m;
I+ /,-(e) : /1(7’1) + .-+ /n(T,,)

MNee:h(m)+-+ () Mx1:mibFe:7 [ Xp:Thlep:T
lFmatch e {h(x1) = e1,...,ln(xn) = €n}: 7T
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Variants: Special case n = 0 — the Empty Type

No construction, empty match (case)
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e:=---|match e {}
Tu=---|0
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Variants: Special case n = 0 — the Empty Type

No construction, empty match (case)

(&)
-4
=
-
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e:=---|match e {}
Tu=---|0
Typing rules
-e:0

IFmatch e {}:7
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Algebraic Datatypes
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m enums in Rust can be recursive

pub enum BTree<T> {
Node(T),
Branch (Box<BTree<T>>, Box<BTree<T>>)

}

m instance of an algebraic or inductive datatype
m prototypical example: natural numbers

m operations on inductive types modeled after Church numerals
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Natural Numbers as an Algebraic Datatype
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Textbook Definition of N

N is the smallest set which fulfills
zero € N
neN=sucneN
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Natural Numbers as an Algebraic Datatype
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Textbook Definition of N

N is the smallest set which fulfills
zero € N
neN=sucneN

Rewritten as a Recursive Equation on Sets

N = {zero} U {suc n| n e N}

Thiemann POPL 2018-05-16 33 /39



Natural Numbers as an Algebraic Datatype
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Textbook Definition of N

N is the smallest set which fulfills
zero € N
neN=sucneN

Rewritten as a Recursive Equation on Sets

N = {zero} U {suc n| n e N}

Rewritten as a Recursive Definition of Types

N = zero(unit) + suc(N) an isomorphism
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Statics of the Natural Number Type
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Introduction for N

Call the isomorphism fold,.:

I+ e: zero(unit) + suc(N)
I+ foldpat(e) : N
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Statics of the Natural Number Type

Introduction for N

Call the isomorphism fold,.:

I+ e: zero(unit) + suc(N)
[ foldpa(e) : N

Elimination for N

Treat a natural number as a loop / iterator (cf. Church numerals)

I, x :zero(unit) + suc(7) e : 7 e : N

[ iterpafx.e1](e): 7
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Dynamics of the Natural Number Type
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Fold is a Value (Call-by-Name); Iteration requires a value

vi=--- | fold,a(e)
Ep = --- | iterpa[x.e1](En)

Thiemann POPL 2018-05-16 35 /39



Dynamics of the Natural Number Type
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Fold is a Value (Call-by-Name); Iteration requires a value

vi=---| foldaa(e)
E, = | iterps[x.e1](En)

m Replaces zero by a base value supplied by ej[x — zero]

m Replaces suc by a function supplied by e;[x > suc...]

iterpae[x.e1](foldna(€)) —> match e { zero(z) = e1[x — zero()];
suc(z) = e1[x — suc(iter,.t[x.e1](2))] }
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Generalization
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m This construction can be generalized to any type constructed from sums and
products and using a single type variable « to indicate the place of the recursion.

m The special case for N corresponds to zero(unit) + suc(a)

m The tricky part of the semantics of iter can be generalized to such types.
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Another Example: Binary Trees
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Type Template for Binary Tree of Numbers

leaf(nat) + branch(a X «)
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Another Example: Binary Trees

Type Template for Binary Tree of Numbers

leaf(nat) + branch(a X «)

Introduction for BT

Call the isomorphism foldy: (again a value)

[+ e:leaf(unit)+ branch(BT x BT)
I foldpa(e) : BT
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Elimination for Binary Trees
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Elimination for BT

Treat a binary tree as an iterator (cf. Church encoding)

I, x:leaf(unit) + branch(7 x 7) F ey : 7 N-e:BT
[ iterpa[x.e1](e2) : BT
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Dynamics for Binary Tree Elimination
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m Replaces leaf by a base value supplied by e;[x — leaf]
m Replaces branch by a function supplied by e;[x — branch...]

m The template has two occurrences of « hence iteration splits into two recursive
calls.
iterp[x.e1](foldpe(e)) —

match e { leaf(z) = e1[x — leaf()];
branch(z, z2) = e1[x — branch( iterp[x.e1](z1),
iterp[x.e1](z2) )] }
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