Principles of Programming Languages
Lecture 05 Types

Albert-Ludwigs-Universitat Freiburg

UNI
FREIBURG

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

16 May 2018

Types
m Simply-Typed Lambda Calculus
m Extensions
m Algebraic Datatypes

Thiemann POPL

2018-05-16

2/ 39

UNI

O
o
=2
Q@
1T}
o
T8

O
o
=2
Q@
1T}
o
T8

UNI

m Starting point: simply typed lambda calculus
m basic type constructions: products and sums

m advanced type constructions: trees (aka algebraic datatypes)

Thiemann POPL 2018-05-16 3/39

Defining a Type System

UNI
FREIBURG

Type systems are customarily defined using deduction systems (i.e., a system of
axioms and rules defining a relation).

The relation is phrased as a typing judgment, which relates a typing environment, T,
and an expression, e, to a type, 7.

MNe:7
A typing environment relates free variables in e to types.

Fre=0|x:r

Thiemann POPL 2018-05-16 4 /39

O
o
=2
Q@
1T}
o
T8

UNI

Types
m Simply-Typed Lambda Calculus

Thiemann POPL 2018-05-16 5/ 39

Simply-Typed Lambda Calculus

Syntax of expressions (as before)
Exproe:=x|Axe|lee|n|ete|if eece
Syntax of types
Types7i=a|7— 7| Int

where
m « is a type variable, drawn from a denumerable set TVar,
m Int is a type constant (only applied lambda calculus), and

"

m 7 — 7" is the type of functions that map values of type 7’ to values of type 7.

Thiemann POPL 2018-05-16 6 /39

UNI

FREIBURG

Typing Rules

UNI
FREIBURG

MNx)=r Mx:7kFe:7" FTFe:7 =7 r-e:7
Nex:7 FrExx.e: 7 =7 lFee:r

[+ e:Int M-e€':Int

[+ n:Int ;
Fete :Int

[F e : Int lFe:T lFes:T

lFif et e e3: 7

Thiemann POPL 2018-05-16 7/ 39

Example: A Type Derivation

UNI
FREIBURG

Fory:akF (Ax.x)y:a

Thiemann POPL 2018-05-16 8 /39

Properties of Simple Typing

UNI
FREIBURG

If '+ e:7, then FV(e) C dom(T).
(Weakening) If I,x : 7 e: 7" and x ¢ FV(e), then T e : 7.

(Substitution) If I, x" : 7'+ e:7and "€ : 7 and TUT" is a well-formed
typing environment, then TU T - e[x’ +— €] : 7.

Thiemann POPL 2018-05-16 9 /39

Connecting Types and Semantics

UNI
FREIBURG

In the beginning . ..

B types are just syntax

m typing is just some relation between expressions and types

Thiemann POPL 2018-05-16 10 / 39

Connecting Types and Semantics

UNI
FREIBURG

In the beginning . ..

B types are just syntax

m typing is just some relation between expressions and types

Connect Types and Semantics

to show that
m types describe execution and

m type avoid misinterpretation of data (type mismatches)

Thiemann POPL 2018-05-16 10 / 39

Key Results

UNI
FREIBURG

(Type Preservation)

frte:7ande— €' thenTHe' : 7.
(Progress)

If T+ e: 7, then exactly one of the following holds.

e is a value.
There is some €’ such that e — €’.

Thiemann POPL 2018-05-16 11 / 39

The Holy Grail

UNI
FREIBURG

Type Soundness Theorem

If) e : 7, then exactly one of the following is true.
m There exists a value v such that e —s vand O F v : 7.

m For each € such that e — €’ there exists €” such that e — €.

Thiemann POPL 2018-05-16 12 / 39

A Surprising Property of the Simply-Typed Lambda Calculus

UNI
FREIBURG

m Every simply-typed term has a normal form.

Strong Normalization

Suppose that - e : 7.
Then there exists a term €’ with e —s €’ such that €’ is in normal form.

Thiemann POPL 2018-05-16 13 / 39

O
o
=2
Q@
1T}
o
T8

UNI

Types

m Extensions

Thiemann POPL 2018-05-16 14 / 39

Recursion

UNI
FREIBURG

m Can add a fixpoint operator without breaking the typing properties

m (Strong normalization is lost, though)

Syntax and Reduction

en=---|fix fix e — e (fix e)
Typing
N-fix : (1 —>7)—>71

Thiemann POPL 2018-05-16 15 / 39

Example

UNI
FREIBURG

The factorial function, again.

Thiemann POPL 2018-05-16 16 / 39

Product and Record Types

UNI
FREIBURG

m A product type is the type of pairs or n-tuples of values where access to the
components is by position. (cf. tuples in Python)

m A record type is the type of n-tuples of values where access to the components
is by name. (cf. structs in C)

Each component may have a different type

The number of components and their names are fixed
Operations

m Construction (introduction) of a tuple/record
m Selection (elimination) of a component

Thiemann POPL 2018-05-16 17 / 39

Examples: Python Tuples

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like
lists. The differences between tuples and lists are, the tuples cannot be changed unlike
lists and tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally
you can put these comma-separated values between parentheses also. For example —

tupl = ('physics’', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5);
tup3 — ||a|| ||b|| ||C|| lldll.

The empty tuple is written as two parentheses containing nothing —

tupl = ();

Source: https://www.tutorialspoint.com/python/python_tuples.htm

Thiemann POPL 2018-05-16 18 / 39

UNI

FREIBURG

https://www.tutorialspoint.com/python/python_tuples.htm

Python Tuples (Cont)

Accessing Values in Tuples To access values in tuple, use the square brackets for slicing
along with the index or indices to obtain value available at that index. For example —

tupl = ('physics’', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tupl[O0]:.", tupl[O];

print "tup2[1:5]:,", tup2[1:5];

Source: https://www.tutorialspoint.com/python/python_tuples.htm

Thiemann POPL 2018-05-16

19 / 39

UNI

O
o
=2
Q@
1T}
o
T8

https://www.tutorialspoint.com/python/python_tuples.htm

Example: C Structs

Defining a Structure

To define a structure, you must use the struct statement. The struct statement
defines a new data type, with more than one member. [...] each member definition is
a normal variable definition, such as int i; or float f; or any other valid variable
definition. At the end of the structure's definition, before the final semicolon, you can
specify one or more structure variables but it is optional. Here is the way you would
declare the Book structure

struct Books {

char title[50];
char author[50];
char subject[100];
int book id;
} book;
Thiemann POPL

2018-05-16 20 / 39

2
=

O
o
=2
Q@
1T}
o
T8

https://www.tutorialspoint.com/cprogramming/c_structures.htm

C Structs (Cont)

UNI
FREIBURG

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The

member access operator is coded as a period between the structure variable name and
the structure member that we wish to access.

/x print Bookl info x/

printf("Bookylutitley: %s\n", Bookl.title);
printf("Bookylyauthory: %s\n", Bookl.author);
printf("Bookylysubjecty: %s\n", Bookl.subject);
printf("Bookylybook idy: %d\n", Bookl.book id);

Source https://www.tutorialspoint.com/cprogramming/c_structures.htm

Thiemann POPL 2018-05-16 21 /39

https://www.tutorialspoint.com/cprogramming/c_structures.htm

Products/Tuples

(&)
-4
=
-
zl.u
S

Syntax

Tuple construction and projection

ex=---|(e,...) | mi(e) i€eN

Tu= | TX o XT

Thiemann POPL 2018-05-16 22 /39

Products/Tuples

(&)
-4
=
-
zl.u
S

Syntax

Tuple construction and projection

ex=---|(e,...) | mi(e) i€eN

Tu= | TX o XT

Typing rules
[Fe:m MEe,: 7 lFe:m X~ X1, |
ie{l,...,n}
ME(er,...,en) 71 X+ XTp emi(e):m

Thiemann POPL 2018-05-16 22 /39

O
. &
Reduction 2
25
=Y
Call by name
(e1,-..,en) is a value; no new evaluation contexts required
7T,-(e1,...,e,-,...) — €

Call by value

If vi,..., v, are values, then (vq,...,v,) is a value.
7T,'(V1,...,V,',...) — V;
Evaluation contexts

E i=---[(v,E @)

Thiemann POPL 2018-05-16 23 /39

Special Case: n = 0 the Unit Type

UNI
FREIBURG

Unit construction, no elimination, no reduction

ex=---1() T u=---|unit

Thiemann POPL 2018-05-16 24 / 39

Special Case: n = 0 the Unit Type

UNI
FREIBURG

Unit construction, no elimination, no reduction

Typing rules

Thiemann POPL 2018-05-16 24 / 39

Records

(&)
-4
=
-
zl.u
S

Record construction and selection

ex=---|{h=-ey,...}|el | € Label
o= |{h:7,...}

Thiemann POPL 2018-05-16 25 / 39

Records

(&)
-4
=
-
zl.u
S

Syntax

Record construction and selection

ex=---|{h=-ey,...}|el | € Label
Tuo=-|{h:m,...}
Typing rules
Ml-e:m M=e,: 7, Fte:{h:7,....0h: 7o}
FrE{h=e,....0n=ep) :{h:m1,....0h: 7} MN=el: 7

Thiemann POPL 2018-05-16 25 / 39

Variant and Sum Types

UNI
FREIBURG

m A sum type or variant type is the disjoint, tagged union of two or more types
m Cf. enums in Java and Rust

m Dual of product types

Thiemann POPL 2018-05-16 26 / 39

Example: enum in Rust

enum Message {
Quit ,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),
}

This enum has four variants with different types:

m Quit has no data associated with it at all.

m Move includes an anonymous struct inside it.
m Write includes a single String.

m ChangeColor includes three i32 values.

Source https://doc.rust-lang.org/book/second-edition/ch06-01-defining-an-enum.html

Thiemann POPL 2018-05-16

27 / 39

UNI

FREIBURG

https://doc.rust-lang.org/book/second-edition/ch06-01-defining-an-enum.html

Enum matching in Rust

UNI
FREIBURG

enum Coin {
Penny,
Nickel ,
Dime,
Quarter

}

fn value in_cents(coin: Coin) —> u32 {
match coin {
Coin::Penny = 1,
Coin:: Nickel = 5,
Coin :: Dime => 10,
Coin:: Quarter => 25,

Thiemann POPL 2018-05-16 28 / 39

Variants

Variant construction and match (case)

UNI
FREIBURG

en=---|l(e) |match e {h(x1) = e1,...,Ih(xn) = en} | € Label
To=---| h(m)+ -+ In(7n)

Thiemann POPL 2018-05-16 29 / 39

Variants

Syntax

Variant construction and match (case)

en=---|l(e) |match e {h(x1) = e1,...,Ih(xn) = en} | € Label
Tou=- | h(m)+ -+ In(7h)

Typing rules

NlFe:m;
I+ /,-(e) : /1(7’1) + .-+ /n(T,,)

MNee:h(m)+-+ () Mx1:mibFe:7 [Xp:Thlep:T
lFmatch e {h(x1) = e1,...,ln(xn) = €n}: 7T

Thiemann POPL 2018-05-16 29 / 39

UNI

FREIBURG

Variants: Special case n = 0 — the Empty Type

No construction, empty match (case)

(&)
-4
=
-
zl.u
S

e:=---|match e {}
Tu=---|0

Thiemann POPL 2018-05-16 30 / 39

Variants: Special case n = 0 — the Empty Type

No construction, empty match (case)

(&)
-4
=
-
zl.u
S

e:=---|match e {}
Tu=---|0
Typing rules
-e:0

IFmatch e {}:7

Thiemann POPL 2018-05-16 30 / 39

O
o
=2
Q@
1T}
o
T8

UNI

Types

m Algebraic Datatypes

Thiemann POPL 2018-05-16 31 /39

Algebraic Datatypes

UNI
FREIBURG

m enums in Rust can be recursive

pub enum BTree<T> {
Node(T),
Branch (Box<BTree<T>>, Box<BTree<T>>)

}

m instance of an algebraic or inductive datatype
m prototypical example: natural numbers

m operations on inductive types modeled after Church numerals

Thiemann POPL 2018-05-16 32 /39

Natural Numbers as an Algebraic Datatype

O
o
=2
Q@
1T}
o
T8

UNI

Textbook Definition of N

N is the smallest set which fulfills
zero € N
neN=sucneN

Thiemann POPL 2018-05-16 33 /39

Natural Numbers as an Algebraic Datatype

O
o
=2
Q@
1T}
o
T8

UNI

Textbook Definition of N

N is the smallest set which fulfills
zero € N
neN=sucneN

Rewritten as a Recursive Equation on Sets

N = {zero} U {suc n| n e N}

Thiemann POPL 2018-05-16 33 /39

Natural Numbers as an Algebraic Datatype

UNI
FREIBURG

Textbook Definition of N

N is the smallest set which fulfills
zero € N
neN=sucneN

Rewritten as a Recursive Equation on Sets

N = {zero} U {suc n| n e N}

Rewritten as a Recursive Definition of Types

N = zero(unit) + suc(N) an isomorphism

Thiemann POPL 2018-05-16 33 /39

Statics of the Natural Number Type

(&)
-4
=
-
zl.u
S

Introduction for N

Call the isomorphism fold,.:

I+ e: zero(unit) + suc(N)
I+ foldpat(e) : N

Thiemann POPL 2018-05-16 34 /39

Statics of the Natural Number Type

Introduction for N

Call the isomorphism fold,.:

I+ e: zero(unit) + suc(N)
[foldpa(e) : N

Elimination for N

Treat a natural number as a loop / iterator (cf. Church numerals)

I, x :zero(unit) + suc(7) e : 7 e : N

[iterpafx.e1](e): 7

Thiemann POPL 2018-05-16 34 /39

2
=

O
o
=2
Q@
1T}
o
T8

Dynamics of the Natural Number Type

(&)
-4
=
-
zl.u
S

Fold is a Value (Call-by-Name); Iteration requires a value

vi=--- | fold,a(e)
Ep = --- | iterpa[x.e1](En)

Thiemann POPL 2018-05-16 35 /39

Dynamics of the Natural Number Type

(&)
-4
=
-
zl.u
S

Fold is a Value (Call-by-Name); Iteration requires a value

vi=---| foldaa(e)
E, = | iterps[x.e1](En)

m Replaces zero by a base value supplied by ej[x — zero]

m Replaces suc by a function supplied by e;[x > suc...]

iterpae[x.e1](foldna(€)) —> match e { zero(z) = e1[x — zero()];
suc(z) = e1[x — suc(iter,.t[x.e1](2))] }

Thiemann POPL 2018-05-16 35 /39

Generalization

UNI
FREIBURG

m This construction can be generalized to any type constructed from sums and
products and using a single type variable « to indicate the place of the recursion.

m The special case for N corresponds to zero(unit) + suc(a)

m The tricky part of the semantics of iter can be generalized to such types.

Thiemann POPL 2018-05-16 36 / 39

Another Example: Binary Trees

UNI
FREIBURG

Type Template for Binary Tree of Numbers

leaf(nat) + branch(a X «)

Thiemann POPL 2018-05-16 37 /39

Another Example: Binary Trees

Type Template for Binary Tree of Numbers

leaf(nat) + branch(a X «)

Introduction for BT

Call the isomorphism foldy: (again a value)

[+ e:leaf(unit)+ branch(BT x BT)
I foldpa(e) : BT

Thiemann POPL 2018-05-16 37 /39

UNI

FREIBURG

Elimination for Binary Trees

UNI
FREIBURG

Elimination for BT

Treat a binary tree as an iterator (cf. Church encoding)

I, x:leaf(unit) + branch(7 x 7) F ey : 7 N-e:BT
[iterpa[x.e1](e2) : BT

Thiemann POPL 2018-05-16 38 /39

Dynamics for Binary Tree Elimination

UNI
FREIBURG

m Replaces leaf by a base value supplied by e;[x — leaf]
m Replaces branch by a function supplied by e;[x — branch...]

m The template has two occurrences of « hence iteration splits into two recursive
calls.
iterp[x.e1](foldpe(e)) —

match e { leaf(z) = e1[x — leaf()];
branch(z, z2) = e1[x — branch(iterp[x.e1](z1),
iterp[x.e1](z2))] }

Thiemann POPL 2018-05-16 39 /39

	Types
	Simply-Typed Lambda Calculus
	Extensions
	Algebraic Datatypes

