
Principles of Programming Languages
Lecture 05 Types

Albert-Ludwigs-Universität Freiburg

Peter Thiemann
University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

28 May 2018

Plan

1 Type Inference for the Simply-Typed Lambda Calculus

2 ML-Style Polymorphic Types

3 Type Inference for Mini-ML

Thiemann POPL 2018-05-28 2 / 22

Type Inference for the Simply-Typed Lambda Calculus (STLC)

Typing Problems

Type checking: Given environment Γ, a term e and a type τ , is Γ ` e : τ derivable?
Type inference: Given a term e, are there Γ and τ such that Γ ` e : τ is derivable?

Typing Problems for STLC

Type checking and type inference are decidable for STLC
Moreover, for each typable e there is a principal typing Γ ` e : τ such that any
other typing is a substitution instance of the principal typing

Thiemann POPL 2018-05-28 3 / 22

Type Inference for the Simply-Typed Lambda Calculus (STLC)

Typing Problems

Type checking: Given environment Γ, a term e and a type τ , is Γ ` e : τ derivable?
Type inference: Given a term e, are there Γ and τ such that Γ ` e : τ is derivable?

Typing Problems for STLC

Type checking and type inference are decidable for STLC
Moreover, for each typable e there is a principal typing Γ ` e : τ such that any
other typing is a substitution instance of the principal typing

Thiemann POPL 2018-05-28 3 / 22

Prerequisites for Type Inference for STLC
Substitution

Substitution

A (type) substitution is a finite map S from type variables to types such that
dom(S) ∩ Var(Sα) = ∅, for all type variables α
A substitution extends to a type τ by applying it to all variables in τ

Substitution

S = {α 7→ Int, β 7→ Int→ Int}
τ = α→ α ⇒ Sτ = Int→ Int = Sβ

Thiemann POPL 2018-05-28 4 / 22

Prerequisites for Type Inference for STLC
Substitution

Substitution

A (type) substitution is a finite map S from type variables to types such that
dom(S) ∩ Var(Sα) = ∅, for all type variables α
A substitution extends to a type τ by applying it to all variables in τ

Substitution

S = {α 7→ Int, β 7→ Int→ Int}
τ = α→ α ⇒ Sτ = Int→ Int = Sβ

Thiemann POPL 2018-05-28 4 / 22

Prerequisites for Type Inference for STLC
Unification

Let E ::= ∅ | τ .
= τ ′, E be a set of equations on types.

Unifiers and Most General Unifiers

A substitution S is a unifier of E if, for each τ .
= τ ′ ∈ E , it holds that Sτ = Sτ ′.

A substitution S is a most general unifier of E if S is a unifier of E and for every
other unifier S ′ of E , there is a substitution T such that S ′ = T ◦ S .

Unification
There is an algorithm U that, on input of E , either returns a most general unifier of E
or fails if none exists.

Thiemann POPL 2018-05-28 5 / 22

Prerequisites for Type Inference for STLC
Unification

Let E ::= ∅ | τ .
= τ ′, E be a set of equations on types.

Unifiers and Most General Unifiers

A substitution S is a unifier of E if, for each τ .
= τ ′ ∈ E , it holds that Sτ = Sτ ′.

A substitution S is a most general unifier of E if S is a unifier of E and for every
other unifier S ′ of E , there is a substitution T such that S ′ = T ◦ S .

Unification
There is an algorithm U that, on input of E , either returns a most general unifier of E
or fails if none exists.

Thiemann POPL 2018-05-28 5 / 22

Unification Algorithm

Original Algorithm [Robinson 1965]

Simple, but exponential complexity.

Algorithm by Martelli and Montanari

Based on rewriting E
delete E ∪ {τ .

= τ} ⇒ E
decompose E ∪ {τ1 → τ2

.
= τ ′1 → τ ′2} ⇒ E ∪ {τ1

.
= τ ′1, τ2

.
= τ ′2}

conflict E ∪ {τ .
= τ ′} ⇒ ⊥ if τ and τ ′ are both not variables and start with a

different type constructor
swap E ∪ {τ .

= α} ⇒ E ∪ {α .
= τ} if τ is not a variable

eliminate E ∪ {α .
= τ} ⇒ E [α 7→ τ] ∪ {α .

= τ} if α /∈ Var(τ) and α ∈ Var(E)

check E ∪ {α .
= τ} ⇒ ⊥ if α ∈ Var(τ)

Thiemann POPL 2018-05-28 6 / 22

Unification Algorithm

Original Algorithm [Robinson 1965]

Simple, but exponential complexity.

Algorithm by Martelli and Montanari

Based on rewriting E
delete E ∪ {τ .

= τ} ⇒ E
decompose E ∪ {τ1 → τ2

.
= τ ′1 → τ ′2} ⇒ E ∪ {τ1

.
= τ ′1, τ2

.
= τ ′2}

conflict E ∪ {τ .
= τ ′} ⇒ ⊥ if τ and τ ′ are both not variables and start with a

different type constructor
swap E ∪ {τ .

= α} ⇒ E ∪ {α .
= τ} if τ is not a variable

eliminate E ∪ {α .
= τ} ⇒ E [α 7→ τ] ∪ {α .

= τ} if α /∈ Var(τ) and α ∈ Var(E)

check E ∪ {α .
= τ} ⇒ ⊥ if α ∈ Var(τ)

Thiemann POPL 2018-05-28 6 / 22

Unification Example

Int→ α
.

= β γ → (Int→ Int)
.

= β

β
.

= Int→ α γ → (Int→ Int)
.

= β

β
.

= Int→ α γ → (Int→ Int)
.

= Int→ α

β
.

= Int→ α γ
.

= Int Int→ Int .
= α

β
.

= Int→ α γ
.

= Int α
.

= Int→ Int

β
.

= Int→ (Int→ Int) γ
.

= Int α
.

= Int→ Int

Thiemann POPL 2018-05-28 7 / 22

Principal Type Inference for STLC

The algorithm (due to John Mitchell) transforms a term into a principal typing judgment for
the term or fails if no typing exists.

P(x) = return x : α ` x : α
P(λx.e) = let Γ ` e : τ ← P(e) in

if x : τx ∈ Γ then return Γx ` λx.e : τx → τ
else choose α /∈ Var(Γ, τ) in

return Γ ` λx.e : α→ τ
P(e0 e1) = let Γ0 ` e0 : τ0 ← P(e0) in

let Γ1 ` e1 : τ1 ← P(e1) in
with disjoint type variables in (Γ0, τ0) and (Γ1, τ1)
choose α /∈ Var(Γ0, Γ1, τ0, τ1) in
let S ← U(Γ0

.
= Γ1, τ0

.
= τ1 → α) in

return SΓ0 ∪ SΓ1 ` e0 e1 : Sα
P(dne) = return · ` dne : N
P(succ e) = let Γ ` e : τ ← P(e) in

let S ← U(τ
.

= N) in
return SΓ ` succ e : N

Thiemann POPL 2018-05-28 8 / 22

An example run of P

Thiemann POPL 2018-05-28 9 / 22

Plan

1 Type Inference for the Simply-Typed Lambda Calculus

2 ML-Style Polymorphic Types

3 Type Inference for Mini-ML

Thiemann POPL 2018-05-28 10 / 22

ML-Style Polymorphic Types

Simple types are restrictive
Example:

(λi.(i (λy.succ y)) (i 42)) (λx.x)

λx.x : α→ α
i 42 requires i : N→ β
i (λy.succ y) requires i : (N→ N)→ γ
Unification of the assumption on i fails: term has no simple type
However, term evaluates without error

Insufficient modularity

Thiemann POPL 2018-05-28 11 / 22

Applied Mini-ML

Syntax
Exp 3 e ::= x | λx.e | e e | let x = e in e | dne | succ e
Val 3 v ::= λx.e | dne

Evaluation (Call-by-Value)

Beta-V
(λx.e) v →v e[x 7→ v]

AppL
f →v f ′

f e →v f ′ e

VAppR
e →v e′

v e →v v e′

LetL
e →v e′

let x = e in f →v let x = e′ in f

Beta-Let
let x = v in e →v e[x 7→ v]

SuccL
e →v e′

succ e →v succ e′

Delta
e →δ e′

e →v e′

Thiemann POPL 2018-05-28 12 / 22

Types for Applied Mini-ML

Syntax of Types

τ ::= α | τ → τ | Int Types
σ ::= τ | ∀α.σ Type Schemes
Γ ::= · | Γ, x : σ Type Environments

The type scheme ∀α.σ . . .
binds type variable α
can be instantiated by substituting a type for α in σ
only appears in the type environment

Thiemann POPL 2018-05-28 13 / 22

Operations on Type Schemes

Instance
σ = ∀α1 . . . αm.τ has an instance τ ′, written as σ � τ ′, if there is a substitution S
with dom(S) ⊆ {α1, . . . , αm} such that τ ′ = Sτ .

Generalization

GEN(Γ, τ) = ∀α1 . . . αm.τ

where {α1, . . . , αm} = FV(τ) \ FV(Γ).

Thiemann POPL 2018-05-28 14 / 22

Inference Rules for Mini-ML

Var
σ � τ

Γ, x : σ ` x : τ

Lam
Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′

App
Γ ` e0 : τ → τ ′ Γ ` e1 : τ

Γ ` e0 e1 : τ ′

Let
Γ ` e0 : τ Γ, x : GEN(Γ, τ) ` e1 : τ ′

Γ ` let x = e0 in e1 : τ ′

Num
Γ ` dne : Int

Succ
Γ ` e : Int

Γ ` succ e : Int

Thiemann POPL 2018-05-28 15 / 22

Example Revisited

let i = λx.x in (i (λy.succ y)) (i 42)

λx.x : α→ α

Generalized binding: i : ∀α.α→ α

i 42 using instance Int→ Int

i (λy.succ y) using instance (Int→ Int)→ (Int→ Int)

Type checking succeeds
Type checking the uses of i is better decoupled from i ’s definition ⇒ improved
modularity

Thiemann POPL 2018-05-28 16 / 22

Properties

Type soundness
Decidable type checking and type inference (upcoming)
Basis for type system of ML, Haskell, and other languages
Numerous extensions

Thiemann POPL 2018-05-28 17 / 22

Plan

1 Type Inference for the Simply-Typed Lambda Calculus

2 ML-Style Polymorphic Types

3 Type Inference for Mini-ML

Thiemann POPL 2018-05-28 18 / 22

Type Inference for Mini-ML

The algorithm W(Γ; e) transforms a type environment Γ and a term e into a pair
(S , τ) of a substitution and a type (or fails if no typing exists).
This algorithm is the traditional Hindley-Milner type inference algorithm.

Thiemann POPL 2018-05-28 19 / 22

Mini-ML Type Inference Algorithm, Part I

W(Γ; x) = let ∀α1 . . . αm.τ = Γ(x)
β1 . . . βm ← fresh
return (ID, τ [αi 7→ βi])

W(Γ;λx.e) = β ← fresh
(S , τ)←W(Γ, x : β; e)
return (S ,Sβ → τ)

W(Γ; e0 e1) = (S0, τ0)←W(Γ; e0)
(S1, τ1)←W(S0Γ; e1)
β ← fresh
T ← U(S1τ0

.
= τ1 → β)

return (T ◦ S1 ◦ S0,Tβ)
W(Γ; let x = e0 in e1) = (S0, τ0)←W(Γ; e0)

let σ = GEN(S0Γ, τ0)
(S1, τ1)←W(S0Γ, x : σ; e1)
return (S1 ◦ S0, τ1)

Thiemann POPL 2018-05-28 20 / 22

Mini-ML Type Inference Algorithm, Part II

W(Γ; dne) = return (ID, Int)
W(Γ; succ e) = (S , τ)←W(Γ; e)

let T ← U(τ
.

= Int) in
return (T ◦ S , Int)

Thiemann POPL 2018-05-28 21 / 22

Properties of Type Inference for Mini-ML

Soundness
If W(Γ; e) = return (S , τ), then SΓ ` e : τ .

Completeness

If SΓ ` e : τ ′, then W(Γ; e) = return (T , τ) such that S = S ′ ◦ T and τ ′ = S ′τ .

Thiemann POPL 2018-05-28 22 / 22

	Type Inference for the Simply-Typed Lambda Calculus
	ML-Style Polymorphic Types
	Type Inference for Mini-ML

