
P. Thiemann, G. Radanne Summersemester 2017/18

Essentials of Programming Languages

https://proglang.informatik.uni-freiburg.de/teaching/konzepte/2018ss/

Project λjs

2018-06-26

λjs is a language which has both functions, in the style of the lambda calculus, and simple
objects, similar to Javascript. Your goal will be to implement a dynamic semantics and a type
system for λjs using PLT-redex.

1 Project

This project should be worked on in groups of at most two students. The implementation should
contain a set of rkt files. For the final version, each group should send a file “project-PLT-
<NAMES>.tar” to both Prof. Peter Thiemann and Gabriel Radanne by email. The email should
be titled “project PLT <NAMES>”. The deadline for the project is the July 31, 2018.

To help you get started, a file base.rkt is provided which contains the grammar definition of
the language and some testing infrastructure. All the groups are expected to make a meaningful
effort at the first section. Implementations should contain appropriate tests.

2 Language Description and Dynamic Semantics

λjs is composed of constructions we have seen in various other languages:

• Lambdas

• Objects

• Mutability

We thus consider a call-by-value language with first class functions and objects. New objects are
declared as a list of variables and methods. The set and get operations allow to obtain the value
and modifies the fields of objects. Methods are simply fields that contains a function. Objects can
be recursive by using the this variable. Method names can be arbitrary symbols. Numbers are
objects with methods +, *,

Your first task is to implement small step reduction rules for this language in three steps:

1. Implement lambdas and objects

2. Add recursion with this

3. Add mutability

e ::= x Variables
| (e e) Application
| λ(x : τ).e Abstraction
| (object (field e) ...) Object
| (send e field e ...) Method call
| (get e field) Get field
| (set e field e) Set field
| number Numbers

1

https://proglang.informatik.uni-freiburg.de/teaching/konzepte/2018ss/

3 Type System

We consider the type system for λjs as an extension of the simply-typed lambda calculus where the
type of an object is a record type, that is, 〈f0 : τ0; f1 : τ1; . . . 〉 is the type of an object containing
the fields f0 of type τ0, f1 of type τ1, and so on. When an object is created with the object

construct all the fields are typed and used in the object type. Set and get do not modify the type
of the object. For simplicity, it is not possible to change the type of a field or add new fields using
set. You can see below the typing rules for object creation.

Implement type checking for such a type system. Test that your implementation respects
progress and preservation.

Object
for all i, Γ, (this : 〈f0 : τ0; f1 : τ1; . . . 〉) ` ei : τi

Γ ` (object (f0 e0) . . .) :〈f0 : τ0; f1 : τ1; . . . 〉

Get
Γ ` e :〈. . . ; f : τ ; . . . 〉

Γ ` (get e f) : τ

Set
Γ ` e :〈. . . ; f : τ ; . . . 〉 Γ ` e′ : τ

Γ ` (set e f e′) : τ

2

	Project
	Language Description and Dynamic Semantics
	Type System

