
Model Driven Architecture
UML Diagrams

Prof. Dr. Peter Thiemann

Universität Freiburg

10.05.2006

Kinds of UML Diagrams

UML defines several kinds of diagrams that model different
aspects of software

structural class diagram, package diagram, object diagram,
component diagram, deployment diagram

behavioral use case diagram, sequence diagram,
collaboration diagram, statechart diagram, activity
diagram

UML Diagrams/Structural and Static Aspects

diagram content
class classes and their relationships
package grouping mechanism for class diagrams
object snapshot of a system state
component organization of physical software parts
deployment physical resources of a system; assignment

of software components to hardware

UML Diagrams/Behavioral and Dynamic Aspects

diagram content
use case describe goal-directed interactions of exter-

nal actors with the system
sequence communication and interaction between ob-

jects; ordering of messages
collaboration object diagram with extensions for message

flow and sequencing
statechart dynamic behavior to external stimuli; reactive

and concurrent systems
activity description of control flow between activities;

concurrency

UML Ingredients Important for MDA

class diagram defines static structure of the implementation

statechart diagram specify dynamic behavior of objects

OCL (uses in class diagrams)
definition of invariants
specification of operations

action semantics definition of operations

Class Diagrams

representation of classes and their structural relationships

no behavioral information
UML concrete syntax is graph with

nodes (boxes):
classes
edges (different kinds of arrows and lines):
various relationships between classes

may contain interfaces, packages, relationships, as well as
instances (objects, links)

degree of detail depends on phase

Classes

Student name compartment
matriculationNumber attributes
name
grades
count class attribute
issueCertificate () operations
enterGrade ()
listDegrees () class method

only name compartment obligatory

additional compartments may be defined (responsibilities,
events, exceptions, . . .)

Contents of Name Compartment

1 optional stereotype
«abstract», «enumeration», «interface», «controller»
extension mechanism:
changes meaning, may influence visual appearance

2 class name
abstract classes indicated by italics

3 optional property list of tagged values
{abstract}, {leaf, author=”John Doe”}
extension mechanism

Example for Stereotypes

«enumeration»
Color

red
green
blue

«abstract»
Ticket

venue
price
validity

Attributes compartment

Syntax of an attribute

[visibility] [/] name [: type] [[multiplicity ordering]]
[= default] [{ properties }]

visibility +, #, - , ˜ Design, Implementation
/ derived attribute Design, Implementation
name all phases
type classifier name / PL type (Analysis), Design, Implementation
multiplicity interval (def: 1) Design, Implementation
ordering ordered , unique , . . . Design, Implementation
default language dependent (Design), Implementation
properties e.g., {frozen} (Design), Implementation

class attributes underlined

Visibility

from Design/Implementation Level

+, public

#, protected

- , private

˜ , package

alternatively: notation of the implementation language

Multiplicity

Defines interval of non-negative integers (UML 2.0)

〈multiplicity〉 ::= 〈int〉.. 〈int*〉 | 〈int*〉
〈int*〉 ::= 〈int〉 | *

Most important multiplicities

1 exactly one
0..1 zero or one
0..* arbitrary many
* arbitrary many
1..* at least one

Operations Compartment

Syntax of an operation
[visibility] name ([parameter-list]) [: [return-type] { properties }]

visibility +, #, - , ˜ Design, Implementation
name all phases
parameter-list kind name : type Design, Implementation

kind ∈ in , out , inout
return-type classifier name / PL type (Analysis), Design, Implementation
properties e.g., {query} (Analysis), Design, Implementation

{concurrency=. . . }
{abstract}

class operations underlined

Relations in Class Diagrams

Binary Association

indicates “collaboration” between two classes

reflexive association allowed

solid line between two classes

Generalization
indicates subclass relation

solid line with open arrow towards super class

Dependency

indicates implementation dependency

dashed arrow to dependant entity

adorned with stereotype to indicate kind of dependency

Variations of Associations

Multiary associations
Optional qualifications

association name
association end name
/ indicating a derived association
decoration with role names
navigability (at end, Design)
multiplicities (at end, Design)

Aggregation and composition

Association classes (attach attributes and operations)

Example: Class Diagram

n
role

association

role
m

inheritance

class name

class

name of abstract class
−or−

abstractOperation1()

Class 1 class 2

birdairplanecar

class operation
op2(parmList): result type

class attribute
/derived attribute
attribute2: Typ = default
attribute1

vehicle flying object

implementation of op2

Example: Class Diagram with Associations

subpart

superpart

partno

Part
product

order orderer

manufacturer
Company

**

* 1

*
0..1

reflexive association

multiple parallel associations

multiplicities

Example: Navigability of Associations

A1 B1

A2

A3

A4

A5

B2

B3

B4

B5

both ends navigable

both ends not navigable

both ends unspecified

A4−>B4 navigable
but not B4 to A4

A5−>B5 navigable
reverse direction unspecified

Aggregation and Composition

Aggregation (and composition) indicate a part-of relation

Composition binds tighter: “existential dependence”

Graphical notation: open (filled) lozenge at container

House WallRoof

Door

Constraints on Classes and Associations

Constraints wrt object state or association

Notation: { constraint}

Example constraints on associations:
{sorted} , {immutable} , {read-only} , {subset} ,
{xor}

natural language, pseudo code, predicate logic, . . . , OCL

Statechart Diagrams

A statechart diagram is a finite automaton extended with
output
(combinaton of Moore and Mealy automaton)
Deterministic (Mealy) finite automaton: (Q,Σ,Λ, δ, q0, F)

Q set of states
Σ input alphabet
Λ output alphabet
δ : Q × Σ → Q×Λ transition function
q0 ∈ Q initial state
F ⊆ Q set of final states

Moore automaton associates output with state
Graphical notation extended with operators

hierarchical states
composite states
conditional transitions

Statechart/States
Lifecycle of a Car

In Motion @ gas station Fueling

Crashed

Parked

cleanWindow()
checkOil()

receiveFuel()

[Full]

[need gas]

wreck()

startEngine()
openDoor()
stopEngine()
closeDoor()

[need gas]

Statechart/Hierarchical States

In Motion

Crashed

@ gas station Fueling

Parked

wreck()

cleanWindow()
checkOil()

receiveFuel()

[Full]

[need gas][need gas]

Normal Operation

Refuel

startEngine()
openDoor()
stopEngine()
closeDoor()

H

Statechart/Entry and Exit Actions

Start Partial Dial

entry/start tone
exit/stop tone

entry/number.
append(n)

digit(n) [number.isValid()]

digit(n)

Dialing

Statechart/Concurrent

Setup Cleanup

A1 A2

B1 B2

Statechart/Mixed

Labels on transitions:
event [guard] [/ method list]

if present, guard must be true to trigger the transition
free text or OCL

“Transitions are instanteous”

Statechart/Events

“An event is a noteworthy occurrence [. . .] that may trigger
a state transition.” [UML 2 specification]
Kinds of events (signals)

condition changes from false to true
event happens on each such change; guard is evaluated
once when its event fires; if the guard is false, then the
event is lost
receipt of explicit signal
invocation of an operation (call event instance)
timer event: after period of time or at specified date/time

Statechart/Event Specification

<<signal>>
MouseButton

<<signal>>
MouseDown

<<signal>>
MouseUp

screenX : Integer
screenY : Integer

Signals form a hierarchy

Attributes are event parameters: MouseDown (100, 200)

Elapsed time event: after (10 seconds)
from entry to current state unless otherwise specified

Time event: when (date = 20060514)

	Overview
	Class Diagrams
	Statechart Diagrams

