Model Driven Architecture
OCL

Prof. Dr. Peter Thiemann

Universitat Freiburg

17.05.2006

Addendum: Classifiers and Instances

@ Classifier diagrams may also contain instances
@ Instance description may include

@ name (optional)
o classification by zero or more classifiers
e kind of instance

@ instance of class: object

@ instance of association: link

@ etc

optional specification of values

Notation for Instances

@ Instances use the same notation as classifier

@ Box to indicate the instance
e Name compartment contains

name: classifier , Classifier
name: classifier
: classifier anonymous instance

L unclassified, anonymous instance

e Attribute in the classifier may give rise to like-named slot
with optional value

e Association with the classifier may give rise to link to other
association end
direction must coincide with navigability

Notation for Instances (Graphical)

Ship Sailor
name : String name : String
gross weight : Integer A rank : String
country : String

A A

I
I
I
T b v
| <<instance of>> |<<instance of>> | <<instance of>>
I I I
1 | 1
I
I
I
|

QE2 : Ship

name = "QE2" name = "'N. Bates"'
gross weight = 70327 rank = "'Captain"'
country = ""GB"

captainBates : Sailor

What is OCL?

@ OCL = object constraint language
@ standard query language of UML 2

@ specify expressions and constraints in

@ object-oriented models
@ object modeling artifacts

OCL/Expressions and Constraints

@ Expressions

e initial values, derived values

e parameter values

e body of operation (no side effects = limited to queries)

e of type: Real , Integer , String , Boolean , or model type

@ Constraints

e invariant (class): condition on the state of the class’s
objects which is always true

e precondition (operation): indicates applicability

@ postcondition (operation): must hold after operation if
precondition was met

e guard (transition): indicates applicability

OCL/Context

@ Each OCL expression is interpreted relative to a context
e invariant wrt class, interface, datatype, component (a
classifier)
e precondition wrt operation
@ postcondition wrt operation
e guard wrt transition
@ Context is indicated
e graphically by attachment as a note
e textually using the context syntax
@ Expression is evaluated with respect to a snapshot of the
object graph described by the modeling artifact

OCL/Example

TeamMember

name : String
age : Integer

2.7% meetings

Meeting

participants

&

title : String
numParticipants : Integer
start : Date

duration: Time

Location

name : String

move(newStart : Date)

OCL/Example

TeamMember Meeting Location
2.*% meetings *
name : String — 8 title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context TeamMember inv: age > 0
@ context Meeting inv: duration > 0

OCL/Invariants

@ Expressions of type Boolean
@ Interpreted in 3-valued logic (true , false , undefined)

@ Arithmetic and logic expressions built with the usual
operators

@ Attributes of the context object directly accessible
@ Alternatively through self. attributeName
@ Other values available through navigation

OCL/Navigation

@ Navigation leads from one classifier to another
@ Dot notation object . associationEnd yields
e associated object (or undefined), if upper bound of
multiplicity < 1
e the ordered set of associated objects, if association is
{ordered}
e the set of associated objects, otherwise

@ Class name of other end if association end not named

OCL/Navigation/Examples

TeamMember Meeting Location
2.7% meetings *
name : String — 8 title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context Meeting

e self.location yields the associated object
o self.participants yields set of participants

OCL/More Navigation

@ If navigation yields object, then use

e attribute notation
@ navigation
e operation calls

to continue
@ What if navigation yields a collection?

OCL/More Navigation

@ If navigation yields object, then use

e attribute notation
@ navigation
e operation calls

to continue
@ What if navigation yields a collection?

@ Collection operations:

@ notation collection ->op(args)
o examples: size() ,isEmpty() , notEmpty()

@ Single objects may also be used as collections

@ Attributes, operations, and navigation of elements not
directly accessible

OCL/More Navigation/Examples

TeamMember Meeting Location
2. meetings *
name : String — 118 title : String name : String
age : Integer | Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context Meeting
e inv: self.participants->size() =
numpParticipants
@ context Location
e inv: name="Lobby" implies
meeting->isEmpty()

OCL/Accessing Collection Elements

@ Task: Continue navigation from a collection
@ The collect operation

@ collection ->collect(expression)
@ collection ->collect(vV | expression)
@ collection ->collect(v : Type | expression)

evaluates expression for each element of collection
(as context, optionally named)

@ Result is bag (unordered with repeated elements); same
size as original collection

@ Change to a set using operation ->asSet()

OCL/Accessing Collection Elements

@ Task: Continue navigation from a collection
@ The collect operation

@ collection ->collect(expression)
@ collection ->collect(vV | expression)
@ collection ->collect(v : Type | expression)

evaluates expression for each element of collection
(as context, optionally named)

@ Result is bag (unordered with repeated elements); same
size as original collection

@ Change to a set using operation ->asSet()

@ Shorthands

e col . attribute for col ->collect(attribute)
@ col .op (args) for col ->collect(op (args))

OCL/Accessing Collection Elements

TeamMember Meeting Location
2..% meetings *
name : String — g title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context TeamMember

e inv: meetings.start =
meetings.start->asSet()->asBag()

OCL/Iterator Expressions

@ Task:
@ Examine a collection
@ Define a subcollection

@ Tool: the iterate expression

source ->iterate(it ; res =init | expr)
@ Value:
(Set {})->iterate
(it ; res =init | expr)
= init

(Set {x1, ...})->iterate

(it ; res =init | expr)
= (Set {...})->iterate
(it
; res = expr[it = x1, res = init]

| expr)

OCL/Iterator Expressions/Predefined

exists there is one element that makes body true
source ->exists(it | body) =

source ->iterate(it ;r=false|r or body)
forAll all elements make body true

source ->forAll(it | body) =

source ->iterate(it ;r=true|r and body)

select subset where body is true

source ->select(it | body) =
source ->iterate(it ;r=Set{}}

if body
then r->including(it)
else r

endif)

OCL/Iterator Expressions/Predefined/2

@ Shorthand with implicit variable binding
source ->select(body)
@ Further iterator expressions
@ On Collection: exists , forAll , isUnigue , any, one,
collect
e On Set, Bag, Sequence: select , reject
collectNested , sortedBy

OCL/Iterator Expressions/Examples

TeamMember Meeting Location
2.% meetings *
name : String — 8 title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date
duration: Time

move(newStart : Date)

context TeamMember
inv: meetings->forAll (m1
| meetings->forAll (m2
| ml<>m2 implies disjoint (m1, m2)))
def: disjoint (ml1 : Meeting, m2 : Meeting) : Boolean =
(ml.start + ml.duration <= m2.start) or
(m2.start + m2.duration <= ml.start)

@ def: extends TeamMemberby «OclHelper» operation

OCL/OclAny, OclVoid, Model Elements

@ OclAny is supertype of types from the UML model and all
primitive types (not of collection types)
@ OclVoid is subtype of every type
e single instance OclUndefined
e any operation applied to OclUndefined vyields
OclUndefined (except oclisUndefined())
@ OclModelElement enumeration with a literal for each
element in the UML model

@ OclIType enumeration with a literal for each classifier in
the UML model

@ OclState enumeration with a literal for each state in the
UML model

OCL/Operations on OclAny

= (obj : OclAny) : Boolean

<> (obj : OclAny) : Boolean

oclisNew() : Boolean

ocllsUndefined() : Boolean
oclAsType(typeName : OclType) : T
oclisTypeOf(typeName : OclType) : Boolean
ocllsKindOf(typeName : OclType) : Boolean

oclisinState(stateName : OclState)
Boolean

allinstances() : Set(T) must be applied to a
classifier with finitely many instances

= and <> also available on OcIModelElement , OclType ,
and OclState

OCL/Operations on OclAny/Examples

TeamMember Meeting Location
2..% meetings *
name : String — 8 title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

context Meeting inv:
titte = "general assembly" implies
numParticipants = TeamMember.allinstances()->size()

OCL/Pre- and Postconditions

Specification of operations by

context Type: operation (paraml : Typel, ...): Retur
pre parameterOk : paraml > self.propl
post resultOk : result = paraml - self.propl@pre

@ pre precondition with optional name parameterOk

@ post postcondition with optional name resultOk

@ self receiver object of the operation

@ result return value of the operation

@ @pre accesses the value before executing the operation
o

body: expression defines the result value of the
operation

@ pre , post , body are optional

OCL/Pre- and Postconditions/Examples

TeamMember Meeting Location
2..% meetings *
name : String — 8 title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

context Meeting::move (newStart : Date)
pre: Meeting.allinstances()->forAll (m |
m<>self implies
disjoint(m, newStart, self.duration))
post: self.start = newStart

OCL/Pre- and Postconditions/Examples/2

context Meeting::;joinMeeting (t : TeamMember)

pre: not (participants->includes(t))

post: participants->includes(t) and
participants->includesAll (participants@pre)

Action Semantics

@ An action is the fundamental unit of behavior specification.

@ An action takes a set of inputs and converts them into a set
of outputs [...].

@ The most basic action provides for
implementation-dependent semantics, [...].

@ [...] primitive actions are defined [so0] as to enable the
maximum range of mappings.

@ [...] they either carry out a computation or access object
memory

@ This approach enables clean mappings to a physical
model, [...].

@ In addition, any re-organization of the data structure will
leave the specification of the computation unaffected.

From the UML 2 superstructure 11.1

Action Semantics/Why have it?

@ build complete and precise models

@ formal proofs of correctness of a problem specification
@ high-fidelity model-based simulation and verification

@ enables reuse of domain models

@ stronger basis for model design and eventual coding

@ support code generation to multiple software platforms.

From “Software-platform-independent, Precise Action Specifications for UML", UML'99

Action Semantics/ldea

Basic idea: specify computation so that it is
@ data driven and
@ inherently parallel

@ (sequential execution through data dependency or explicit
control dependency)

@ independent of concrete syntax

Action Semantics/Action Specification

Basic building blocks:

Pins: input and output ports of an action; with type and
multiplicity
Variables: intermediate results

Data flow: connects the output pin of one action to the
input pin of another

Control flow: explicit ordering constraint for action pairs
Actions: for object manipulation, memory operations,
arithmetic, message passing, etc.

Procedures: packaging of actions with input and output
pins

Action Semantics/Action Execution

Life-cycle of an action
@ Waiting. Initial state after creation of action execution.

@ Ready. Action execution with all inputs available and all
control dependencies in state Complete .

@ Executing. Compute outputs from inputs.

@ Complete. Values of output pins determined, signal to
control-flow dependant actions.

Action Semantics/Types of Actions

@ Computation actions e.g. mathematical functions (left
undefined by standard)

@ Composite actions building blocks for control structures like
loops and conditionals

@ Read and write actions access, navigate, and modify
model-level constructs (objects, links, attribute slots, and
variables)

@ Collection actions = iterators for actions

Action Semantics/Example

then:Clause :_ReadlIsClassifiedObjectAction
test
clause
testOutput) ”
body result input | classifie
if:_ConditionalAction . Action . OutputPin| |_InputPin State:
Class
destination
sl variable - result - OutputPin| SoUrce :
Variable BeadVariableAction DataFlow

From: UML Action Semantics for Model Transformation Systems, Varré and Pataricza (uses obsolete 1.5

metamodel)

Action Semantics/Basic Pins

TypedElement
(Fro mKe mel)

MultiplicityElement

OutputPin

B

+output

{ordered, union,
subsets owne dElement}

InputPin -1

+/input
{ordered, union,
subsets ownedElement}

Action

ValuePin

+value

ValueSpecification
(tromKernel)

= |

Action Semantics/Object Actions

Action InputPin
(fromBasicActions) (from Basichctions)

+firg /N 4 1 +second
{subsets input} {subsets input}

‘ 0.1 [XX

- DednoyObjectcion .
CreateObjectAction : ReadSelfAction
isDesiroyLinks : Boolean = false TestidentityAction
isDestroyOwnedObjects : Boolean = false

* 0.1
0.1 ¢ -
+result +result
+result . 4 e ts outoul
1 |+dasifier 1 | gubsetsoutput) 4 {subsets input} {su output} {subsetsoutput} | ,
3y +arget
Classifier OutputPin InputPin QutputPin QutputPin
(fomKemel) {from 5} B (from BasicActions) (from Basic Act ons)

	Addendum: Classifiers and Instances
	OCL
	Action Semantics

