
Model Driven Architecture
OCL

Prof. Dr. Peter Thiemann

Universität Freiburg

17.05.2006

Addendum: Classifiers and Instances

Classifier diagrams may also contain instances
Instance description may include

name (optional)
classification by zero or more classifiers
kind of instance

instance of class: object
instance of association: link
etc

optional specification of values

Notation for Instances

Instances use the same notation as classifier
Box to indicate the instance
Name compartment contains
name: classifier , classifier . . .
name: classifier
: classifier anonymous instance
: unclassified, anonymous instance
Attribute in the classifier may give rise to like-named slot
with optional value
Association with the classifier may give rise to link to other
association end
direction must coincide with navigability

Notation for Instances (Graphical)

name : String
gross weight : Integer
country : String

QE2 : Ship

Ship

<<instance of>>

name = "QE2"
gross weight = 70327
country = "GB"

Sailor

name : String
rank : String

name = "N. Bates"
rank = "Captain"

captainBates : Sailor

<<instance of>><<instance of>>

What is OCL?

OCL = object constraint language

standard query language of UML 2
specify expressions and constraints in

object-oriented models
object modeling artifacts

OCL/Expressions and Constraints

Expressions
initial values, derived values
parameter values
body of operation (no side effects⇒ limited to queries)
of type: Real , Integer , String , Boolean , or model type

Constraints
invariant (class): condition on the state of the class’s
objects which is always true
precondition (operation): indicates applicability
postcondition (operation): must hold after operation if
precondition was met
guard (transition): indicates applicability

OCL/Context

Each OCL expression is interpreted relative to a context
invariant wrt class, interface, datatype, component (a
classifier)
precondition wrt operation
postcondition wrt operation
guard wrt transition

Context is indicated
graphically by attachment as a note
textually using the context syntax

Expression is evaluated with respect to a snapshot of the
object graph described by the modeling artifact

OCL/Example

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context TeamMember inv: age > 0

context Meeting inv: duration > 0

OCL/Example

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context TeamMember inv: age > 0

context Meeting inv: duration > 0

OCL/Invariants

Expressions of type Boolean

Interpreted in 3-valued logic (true , false , undefined)

Arithmetic and logic expressions built with the usual
operators

Attributes of the context object directly accessible

Alternatively through self. attributeName

Other values available through navigation

OCL/Navigation

Navigation leads from one classifier to another
Dot notation object . associationEnd yields

associated object (or undefined), if upper bound of
multiplicity ≤ 1
the ordered set of associated objects, if association is
{ordered}
the set of associated objects, otherwise

Class name of other end if association end not named

OCL/Navigation/Examples

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context Meeting
self.location yields the associated object
self.participants yields set of participants

OCL/More Navigation

If navigation yields object, then use
attribute notation
navigation
operation calls

to continue

What if navigation yields a collection?

Collection operations:
notation collection -> op(args)
examples: size() , isEmpty() , notEmpty() , . . .

Single objects may also be used as collections

Attributes, operations, and navigation of elements not
directly accessible

OCL/More Navigation

If navigation yields object, then use
attribute notation
navigation
operation calls

to continue

What if navigation yields a collection?
Collection operations:

notation collection -> op(args)
examples: size() , isEmpty() , notEmpty() , . . .

Single objects may also be used as collections

Attributes, operations, and navigation of elements not
directly accessible

OCL/More Navigation/Examples

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context Meeting
inv: self.participants->size() =
numParticipants

context Location
inv: name="Lobby" implies
meeting->isEmpty()

OCL/Accessing Collection Elements

Task: Continue navigation from a collection
The collect operation

collection ->collect(expression)
collection ->collect(v | expression)
collection ->collect(v : Type | expression)

evaluates expression for each element of collection
(as context, optionally named)

Result is bag (unordered with repeated elements); same
size as original collection

Change to a set using operation ->asSet()

Shorthands
col . attribute for col ->collect(attribute)
col . op (args) for col ->collect(op (args))

OCL/Accessing Collection Elements

Task: Continue navigation from a collection
The collect operation

collection ->collect(expression)
collection ->collect(v | expression)
collection ->collect(v : Type | expression)

evaluates expression for each element of collection
(as context, optionally named)

Result is bag (unordered with repeated elements); same
size as original collection

Change to a set using operation ->asSet()

Shorthands
col . attribute for col ->collect(attribute)
col . op (args) for col ->collect(op (args))

OCL/Accessing Collection Elements

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context TeamMember
inv: meetings.start =
meetings.start->asSet()->asBag()

OCL/Iterator Expressions

Task:
Examine a collection
Define a subcollection

Tool: the iterate expression
source ->iterate(it ; res = init | expr)
Value:
(Set {})->iterate

(it ; res = init | expr)
= init

(Set {x1, ...})->iterate
(it ; res = init | expr)
= (Set {...})->iterate

(it
; res = expr [it = x1, res = init]
| expr)

OCL/Iterator Expressions/Predefined

exists there is one element that makes body true

source ->exists(it | body) =
source ->iterate(it ;r=false|r or body)

forAll all elements make body true

source ->forAll(it | body) =
source ->iterate(it ;r=true|r and body)

select subset where body is true

source ->select(it | body) =
source ->iterate(it ;r=Set{}|

if body
then r->including(it)
else r
endif)

OCL/Iterator Expressions/Predefined/2

Shorthand with implicit variable binding
source ->select(body)

Further iterator expressions
On Collection: exists , forAll , isUnique , any , one ,
collect
On Set, Bag, Sequence: select , reject ,
collectNested , sortedBy

OCL/Iterator Expressions/Examples

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context TeamMember
inv: meetings->forAll (m1

| meetings->forAll (m2
| m1<>m2 implies disjoint (m1, m2)))

def: disjoint (m1 : Meeting, m2 : Meeting) : Boolean =
(m1.start + m1.duration <= m2.start) or
(m2.start + m2.duration <= m1.start)

def: extends TeamMemberby «OclHelper» operation

OCL/OclAny, OclVoid, Model Elements

OclAny is supertype of types from the UML model and all
primitive types (not of collection types)
OclVoid is subtype of every type

single instance OclUndefined
any operation applied to OclUndefined yields
OclUndefined (except oclIsUndefined())

OclModelElement enumeration with a literal for each
element in the UML model

OclType enumeration with a literal for each classifier in
the UML model

OclState enumeration with a literal for each state in the
UML model

OCL/Operations on OclAny

= (obj : OclAny) : Boolean

<> (obj : OclAny) : Boolean

oclIsNew() : Boolean

oclIsUndefined() : Boolean

oclAsType(typeName : OclType) : T

oclIsTypeOf(typeName : OclType) : Boolean

oclIsKindOf(typeName : OclType) : Boolean

oclIsInState(stateName : OclState) :
Boolean

allInstances() : Set(T) must be applied to a
classifier with finitely many instances

= and <> also available on OclModelElement , OclType ,
and OclState

OCL/Operations on OclAny/Examples

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context Meeting inv:
title = "general assembly" implies

numParticipants = TeamMember.allInstances()->size()

OCL/Pre- and Postconditions

Specification of operations by

context Type :: operation (param1 : Type1 , ...): ReturnType
pre parameterOk : param1 > self.prop1
post resultOk : result = param1 - self.prop1@pre

pre precondition with optional name parameterOk

post postcondition with optional name resultOk

self receiver object of the operation

result return value of the operation

@pre accesses the value before executing the operation

body: expression defines the result value of the
operation

pre , post , body are optional

OCL/Pre- and Postconditions/Examples

TeamMember

name : String
age : Integer

name : String

Location

participants

2..* meetings

*
title : String
numParticipants : Integer
start : Date
duration: Time

Meeting

move(newStart : Date)

1

*

context Meeting::move (newStart : Date)
pre: Meeting.allInstances()->forAll (m |

m<>self implies
disjoint(m, newStart, self.duration))

post: self.start = newStart

OCL/Pre- and Postconditions/Examples/2

context Meeting::joinMeeting (t : TeamMember)
pre: not (participants->includes(t))
post: participants->includes(t) and

participants->includesAll (participants@pre)

Action Semantics

An action is the fundamental unit of behavior specification.

An action takes a set of inputs and converts them into a set
of outputs [. . .].

The most basic action provides for
implementation-dependent semantics, [. . .].

[. . .] primitive actions are defined [so] as to enable the
maximum range of mappings.

[. . .] they either carry out a computation or access object
memory

This approach enables clean mappings to a physical
model, [. . .].

In addition, any re-organization of the data structure will
leave the specification of the computation unaffected.

From the UML 2 superstructure 11.1

Action Semantics/Why have it?

build complete and precise models

formal proofs of correctness of a problem specification

high-fidelity model-based simulation and verification

enables reuse of domain models

stronger basis for model design and eventual coding

support code generation to multiple software platforms.

From “Software-platform-independent, Precise Action Specifications for UML”, UML’99

Action Semantics/Idea

Basic idea: specify computation so that it is

data driven and

inherently parallel

(sequential execution through data dependency or explicit
control dependency)

independent of concrete syntax

Action Semantics/Action Specification

Basic building blocks:

Pins: input and output ports of an action; with type and
multiplicity

Variables: intermediate results

Data flow: connects the output pin of one action to the
input pin of another

Control flow: explicit ordering constraint for action pairs

Actions: for object manipulation, memory operations,
arithmetic, message passing, etc.

Procedures: packaging of actions with input and output
pins

Action Semantics/Action Execution

Life-cycle of an action

Waiting. Initial state after creation of action execution.

Ready. Action execution with all inputs available and all
control dependencies in state Complete .

Executing. Compute outputs from inputs.

Complete. Values of output pins determined, signal to
control-flow dependant actions.

Action Semantics/Types of Actions

Computation actions e.g. mathematical functions (left
undefined by standard)

Composite actions building blocks for control structures like
loops and conditionals

Read and write actions access, navigate, and modify
model-level constructs (objects, links, attribute slots, and
variables)

Collection actions⇒ iterators for actions

Action Semantics/Example

From: UML Action Semantics for Model Transformation Systems, Varró and Pataricza (uses obsolete 1.5

metamodel)

Action Semantics/Basic Pins

Action Semantics/Object Actions

	Addendum: Classifiers and Instances
	OCL
	Action Semantics

