
Model Driven Architecture
Metamodeling — Applications

Prof. Dr. Peter Thiemann

Universität Freiburg

31.05.2006

Applications of Metamodeling
Feature Modeling

Feature models are a tool for domain analysis
Provide a hierarchical view of features and their
dependencies
Establish an ontology for categorization

Visualized by feature diagrams

Conceived for software domain analysis: Kang, Cohen,
Hess, Novak, Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report
CMU/SEI-90-TR-21. 1990.

Popularized for Generative Programming by Czarnecki and
Eisenäcker

Also for analyzing other domains

Feature Modeling
Example

Vehicle

EngineBody Gearbox Hitch

manual electrical Combustionautomatic

Hierarchical, but not is-a relation (as in a class diagram)

Features may be qualified as
required, optional, alternative, or n-of-m (selection)

Feature Modeling
MOF-based Metamodel

<<instanceof>> <<instanceof>>
<<instanceof>>

FM::SubfeatureGroup

1

FM::GroupKind

inv:value=="required"||value=="optional"||

inv:type=="String"

MOF::Class
attributes MOF::Attribute

type:String

value:String

kind
11 FM::GroupKind

value=="alternative"||value=="nOfM"
inv:parent==null

FM::Concept
FM::Concept

FM::Feature

features

n

n

groups

parent

1

MOF

Feature
Modelling

Feature Modeling
Feature Model in Abstract Syntax

additionalFeatureSFG

FM::SubfeatureGroup

kind="optional"

AdditionalFeature

FM::Feature

name="AdditionalFeatures"

addFeatureTwoSFG

FM::SubfeatureGroup

kind="nOfM"

stackFeature:

FM::Concept

optimizationDFG

FM::SubfeatureGroup

name="Optimization"kind="optional"

optimizationKindSFGoptimizationFeature

FM::SubfeatureGroupFM::Feature

kind="alternative"

threadFeature

FM::Feature

name="ThreadSafety"

boundsFeature

FM::Feature

name="BoundsCheck"

typeFeature

FM::Feature

name="TypeCheck

speedFeature

FM::Feature

name="Speed"

memoryFeature

FM::Feature

name="MemoryUsage"

Additional

Memory

Optimization
Features

Speed
Usage Safety

Thread
Check
Bounds

Check
Type

Stack

Feature Modeling
Extended Metamodel and Concrete Syntax

FM::Feature

open:boolean

optimizationFeature

FM::Feature

name="Optimization"

open=true [open]

Optimization

Metamodel Object diagram Feature diagram

New feature⇒
new attribute in metamodel

new slot in model

extension of concrete syntax

Feature Modeling
Further Features

Macros for combinations of features

Multiplicity of subfeatures

Priority of features; stakeholders

Open / closed
Additional constraints (without graphical notation)

requires: feature dependency
excludes: feature anti-dependency
recommends: soft dependency
discourages: soft anti-dependency

Example: Optimization for speed discourages thread
safety, discourages bounds check

Applications of Metamodeling
Component Modeling

Domain specific modeling language for small and
embedded systems

Main abstraction: component
A component may

provide services via interfaces
require services via interfaces
have configuration parameters
be an application (does not provide services)

Component Modeling
Example

SMSIF CallIF EMSIF

UIManager

MenuUtilities

TextEditor

SMSIF

<<application>>

SMSApp

GSMStack

lookAndFeel:String

Component Modeling
Simple Component Metamodel

Application

inv: ports−>select(oclIsKindOf(ProvidedPort))−>isEmpty

context Application

inv: to.Interface = from.Interface

context PortDependency

{subsets
Attributes}

ConfigParam
*

1 *

ports

* 1

tofrom

Port

Dependency

ProvidedPortRequiredPort

Port InterfaceComponent

Component Modeling
MOF-based Simple Component Metamodel

Port
Dependency inv: to.Interface = from.Interface

context PortDependency

UML::

Attribute
UML::

Interface

*

{subsets Features}

Attributes

UML::Class
name: String

type: String

Port

Application

ConfigParam
*

Component
1 * * 1

ports

Attributes}
{subsets

RequiredPort ProvidedPort

Interface

tofrom
context ConfigParam

inv: type = "String"

inv: ports−>select(oclIsKindOf(ProvidedPort))−>isEmpty

context Application

Pitfalls in Metamodeling

How to avoid

confusion with UML notation

mixing metalevels

Central question

what is the mapping to a programming language?

Interfaces
Every instance of Entity should implement SomeInterface

wrong approach

<<interface>>
SomeInterface Entity

book solution use OCL or subsetting of metaassociation

SomeInterface
{subsets realization} 1

Entity

realizationEntity
−>exists(oclIsTypeOf(SomeInterface))

Interfaces/2
Every instance of Entity should implement SomeInterface

correct solution use OCL

implements <<interface>>

−>select(name="SomeInterface")
−>size() = 1

<<instanceof>>

Entity

realization

:Entity SomeInterface

−>select(hasStereotype("interface"))

solution with metaassociation and OCL is also possible

Dependency

Problem: A Component may depend from multiple
Interface s because the Component may invoke
operations of the Interface s.

wrong approach “metaclass Component depends on
metaclass Interface ”

Component Interface

correct solution a metaassociation “uses”

Component
uses

* *
Interface

Identifying Attribute

An Entity must have an identifying attribute with
name ID and type String . Entity is a subclass of
UML::Class .

wrong approach

Entity

ID : String

defines a tagged value IF for all Entity instances in the
model

Identifying Attribute

correct solution

Entity

)
Type.Name = "String"
(Attribute−>select(Name= "ID")−>forAll(
and
(Attribute−>select(Name = "ID")−>size=1)

there must be exactly one attribute with name ID
all attributes named ID must have type String

incorrect attempt

context Entity inv:
Attribute

->select (Name="ID" and Type.Name="String")
->size() = 1

Identifying Attribute

correct solution

Entity

)
Type.Name = "String"
(Attribute−>select(Name= "ID")−>forAll(
and
(Attribute−>select(Name = "ID")−>size=1)

there must be exactly one attribute with name ID
all attributes named ID must have type String

incorrect attempt

context Entity inv:
Attribute

->select (Name="ID" and Type.Name="String")
->size() = 1

Primary Key Attribute

Each instance of Entity must have exactly one
attribute of type EntityPK , where EntityPK is a
subclass of Attribute .

wrong approach pk : EntityPK

Entity

correct solution

Entity
{subsets Attribute} 1

EntityPK

UML::Class UML::Attribute
{subsets Feature}

Attribute

*

Metalevels and Instanceof

myFather’sGolf:Car myFather:Person

me:Person

PersonCar

myVWBus:Car

M1

M0

driver

<<instanceof>>

<<instanceof>>
<<instanceof>> <<instanceof>>

Objects are instances of classes

Links are instances of associations

Metalevels and Instanceof
Model Elements as Instances of Metamodel Elements

<<instanceof>> <<instanceof>>

UML::Class UML::Object

Car

Person

me:

father:

myVWBus:

myFather’sGolf

<<instanceof>>

The Auto and Person classes are instances of the MOF
metaclass UML::Class
The objects me: and myFather: are instances of the MOF
metaclass UML::Object
How can that be?

Metalevels and Instanceof
A Look at the Metamodel

UML::Class
1

instance

*
UML::Object

UML::LinkUML::Association

cardinality
roleName

AssociationEnd

2

1

1 *

instance

type

type

instanceof

instanceof

⇒ two different instanceof relations

	Metamodeling Applications
	Feature Modeling
	Component Modeling

	Pitfalls in Metamodeling

