Model Driven Architecture
Metamodeling — Applications

Prof. Dr. Peter Thiemann

Universitat Freiburg

31.05.2006

Applications of Metamodeling

Feature Modeling

@ Feature models are a tool for domain analysis

e Provide a hierarchical view of features and their
dependencies
e Establish an ontology for categorization

@ Visualized by feature diagrams

@ Conceived for software domain analysis: Kang, Cohen,
Hess, Novak, Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report
CMU/SEI-90-TR-21. 1990.

@ Popularized for Generative Programming by Czarnecki and
Eisenacker

@ Also for analyzing other domains

Feature Modeling

Example

Vehicle

manual automatic electrical

@ Hierarchical, but not is-a relation (as in a class diagram)

@ Features may be qualified as
required, optional, alternative, or n-of-m (selection)

Feature Modeling

MOF-based Metamodel

attributes

MOF::Attribute

type:String

value:String MOF
| Feature
I<<instanccof>> Modelling

kind

parent

FM::Concept

inv:parent==null

FM::GroupKind
inv:value=="required"llvalue=="optional"ll
value=="alternative"llvalue=="nOfM"

invitype=="String"

Feature Modeling

Feature Model in Abstract Syntax

AdditionalFeature

s i Festurs TyoSEG IR

threadFeature

FM::Feat

name="AdditionalFeatures"

Kind="optional

A

optimizationDFG optimizatior

Kind="nOfM"

name="ThreadSafety"

boundsFeature
FM::Feature

name="BoundsCheck""

eature

FM::Feature

name="TypeCheck

indSFG.

v

kind="optional" name="Optimization"

FM::SubfeatureGroup

FM::Feature

kind="alternative"

name="Speed"

-

‘ Optimization

Additional
Features

Thread
Safety

Bounds

Check Check

Type ‘

sl

‘memoryFeature
FM::Feature

name="MemoryUsage""

Feature Modeling

Extended Metamodel and Concrete Syntax

Metamodel

Object diagram

optimizationFeature

FM::Feature

FM::Feature

open:boolean

name=""Optimization'"

open=true

New feature =

@ new attribute in metamodel

@ new slot in model

@ extension of concrete syntax

Feature diagram

—

Optimization

[open]

Feature Modeling

Further Features

@ Macros for combinations of features
@ Multiplicity of subfeatures
@ Priority of features; stakeholders

@ Open/ closed
@ Additional constraints (without graphical notation)

@ requires: feature dependency

e excludes: feature anti-dependency

e recommends: soft dependency

e discourages: soft anti-dependency
Example: Optimization for speed discourages thread
safety, discourages bounds check

Applications of Metamodeling

Component Modeling

@ Domain specific modeling language for small and
embedded systems

@ Main abstraction: component

@ A component may

@ provide services via interfaces
require services via interfaces
have configuration parameters
be an application (does not provide services)

Component Modeling

Example

<<application>>

SMSApp

SMSIF CalllF EMSIF

GSMStack

MenuUtilities

TextEditor
|
|
B
S .
UIManager

lookAndFeel:String

Component Modeling

Simple Component Metamodel

ConfigParam
{subsets
Attributes}
1 * - 1
Component ports Port — Interface
Application RequiredPort ProvidedPort
K from to
context Application
inv: p i i isEmpt Port context PortDependency
Dependency
terfa

Component Modeling

MOF-based Simple Component Metamodel

{subsets Features}

UML:
Attribute

UML::

UML::Class

name: String Interface

type: String

Interface

Component

RequiredPort

context ConfigParam context PortDependency

inv: type = "String”

Dependency

: to.Interface = from.Interface

context Application

inv: p d i iSEmp

Pitfalls in Metamodeling

How to avoid
@ confusion with UML notation
@ mixing metalevels
Central question
@ what is the mapping to a programming language?

Interfaces

Every instance of Entity should implement Somelnterface

@ wrong approach

<<interface>>

Somelnterface Entity

@ book solution use OCL or subsetting of metaassociation

Enmtity Y~ TTTTTTTToo realization

—>exists(oclIsTypeOf(Somelnterface))

{subsets realization} 1 |
Entity | Somelnterface

Interfaces/2

Every instance of Entity should implement Somelnterface

@ correct solution use OCL

realization
Entity = 9 " """ """ ""7---- —>select(hasStereotype("'interface'))
—>select(name=""Somelnterface')
—>size() = 1
! .
| <<instanceof>>
implements <<interface>>
L [> Somelnterface

@ solution with metaassociation and OCL is also possible

Dependency

@ Problem: A Component may depend from multiple
Interface s because the Component may invoke
operations of the Interface s.

@ wrong approach “metaclass Component depends on
metaclass Interface ”

Component r———"~"~"~=~====-=-- —> Interface

@ correct solution a metaassociation “uses”

uses
Component Interface

Identifying Attribute

An Entity must have an identifying attribute with
name ID and type String . Entity is a subclass of
UML::Class .

@ wrong approach

Entity

ID : String

defines a tagged value IF for all Entity instances in the
model

Identifying Attribute

@ correct solution

(Attribute—>select(Name = "ID'")->size=1)
Entity = (OQO-------—---—--- and
(Attribute—>select(Name= "ID'")->forAll(

Type.Name = "String"
)

e there must be exactly one attribute with name 1D
e all attributes named ID must have type String

Identifying Attribute

@ correct solution

(Attribute—>select(Name = "ID'")->size=1)
Entity = (OQO-------—---—--- and
(Attribute—>select(Name= "ID'")->forAll(

Type.Name = "String"
)

e there must be exactly one attribute with name 1D
e all attributes named ID must have type String

@ incorrect attempt

context Entity inv:
Attribute
->select (Name="ID" and Type.Name="String")
->size() = 1

Primary Key Attribute

Each instance of Entity must have exactly one
attribute of type EntityPK , where EntityPK is a
subclass of Attribute .

Entity

pk : EntityPK.

@ wrong approach
@ correct solution

{subsets Feature} *
UML::Class N UML::Attribute
Attribute
Zﬁ {subsets Attribute} 1 ZF
Entity EntityPK

Metalevels and Instanceof

driver
Car Person
~ 7~ A
1 | 1
: \ \ h M1
77777777 e e i E i B il
1 ! ' ! Mo
| | 1 o
I 1 1 !
I 1 1 !
|<<instanceof>> 1 ! <<instanceof>> !
1 1< f>> I :
X |
myVWBus:Car L me:Person :
: | <<instanceof>>
| 1
| 1
L !
myFather’sGolf:Car myFather:Person

@ Objects are instances of classes
@ Links are instances of associations

Metalevels and Instanceof

Model Elements as Instances of Metamodel Elements

UML::Class UML::Object
7S 0 O
l
! ! 1 ! 1 1
! ! 1 : 1 1
1 ! . |
|<<instanceof>> | ! <‘F‘“5"‘“'390f>f> .
| 1 L oo
: 1 ! ! : 1
1 1 ! ! N 1
1 ! ! 1
l l |
! me: ! myVWBus: !
Car ! : :
! e
| << > , |
l l |
l l |
l l |
l l |
! ! !
Person father: myFather’sGolf

@ The Auto and Person classes are instances of the MOF
metaclass UML::Class

@ The objects me: and myFather: are instances of the MOF
metaclass UML::Object

Metalevels and Instanceof

A Look at the Metamodel

1
1
type : instance
.t UML::Object
UML::Class 1 instanceof ! . Jec
1
1
1
1
1
1
AssociationEnd |
1
roleName :
cardinality |
1
2 1
1
1
1 1
1
t inst
UML::Association ype ! Instance UML::Link
1 instanceok #

@ = two different instanceof relations

	Metamodeling Applications
	Feature Modeling
	Component Modeling

	Pitfalls in Metamodeling

