Model Driven Architecture
Classification of Model Transformation
Approaches

Prof. Dr. Peter Thiemann

Universitéat Freiburg

21.06.2006

8 Classification of Model Transformation Approaches

Categories
@ Model To Code
@ Model To Model

Status of QVT

Classification of Model Transformation Approaches

@ Survey and categorization
@ Feature model to compare different approaches

@ Applying domain analysis to the following input data:

@ published in literature: GreAT, UMLX, ATOM, VIATRA,
BOTL, ATL, relational, oo logic programming

e submitted to OMG: QVTP, CDI (CBOP, DSTC, IBM), AST+
(Alcatel, Softeam, Thales, TNI-Valiosys, Codagen
Corporation, ...), IOPT (Interactive Objects, Project
Technology), CS (Compuware Crop and Sun Microsystems)

@ open-source MDA tools: Jamda, AndroMDA, JET, FUUT-je,
GMT

e commercial MDA tools: OptimaJd, ArcStyler, XDE, Codagen
Architect, b+m Generator Framework

From: Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Approaches. OOPSLA 2003

Workshop on Generative Techniques in the Context of Model-Driven Architectures. 2003.

Design Features of Model Transformation Approaches

Model Transformation

l Transformation Rules l

Directionality l

l

l Rules organization l

l Rule Application Scoping Tracing l

l

l Source-Target Relationship l

l

Rule Application Strategy l

Rule Scheduling]

Transformation Rules

Q
Intermediate Structures
.
.
LHS/RHS Syntactic Separation

Semantically Typed

‘ Semantically Typed ‘

Syntactically Typed

Textual Graphical

Transformation Rules/2

@ General form of a rule: LHS — RHS

@ LHS < source model; RHS « target model
@ Representation

o (Meta)Variables range over model elements
e Patterns are model fragments with variables
e Logic: computations and constraints on model elements

@ Typing
@ syntactic: restricted to instances of a metamodel element
e semantic: further model constraints

Source-Target Relationship

| Source-Target Relationship |

AN

| New Target | | Existing Target |

N

In-Place (In Source) Update

| Destructive | Extension Only

@ separate target (CDI)
@ only in-place update (VIATRA, GreAT)
@ both possible (XDE)

Rule Application Strategy

| Rule Application Strategy |

| Concurrent | | One-Point |

@ Rule may match multiple times = strategy required
@ Traceability links

Rule Scheduling

Rule Scheduling

Rule Iteration
Fixpoint Iteration

Explicit Condition

Non-Determinism ‘

Conflict Resolution

‘ Interacive ‘

@ Order of rule application

@ Stratego is a language for expressing strategies and
scheduling for term rewriting

Rule Organization

| Rule Organization |

|ModularityMechanisms | Organizational Structure |

Source-Oriented
Independent
Target—Oriented

| Reuse Mechanisms |

| Logical Composition |

Traceability Links

O

Dedicated Support

Storage Location

l Model l

/N

l Source l Target

Separate] Manual l Automatic

l All Rules l lSelectedRules l

@ some systems expect transformations to encode
traceability by themselves
@ separate storage preferable

Directionality

Directionality

Unidirectional Bidirectional

J
I

Bidirectional Rules Complementary Pairs

@ declarative rules more likely to be invertible
@ lack of injectivity a problem
@ enumerating solutions, establish part of result

Categories of Model Transformations

@ model-to-code (model-to-text)
@ special case, but no metamodel; code-as-text
e also documentation templates, XML
@ visitor vs. template

@ model-to-model

direct manipulation

o relational

e graph transformation

@ structure driven

Model To Code

Visitor Based

@ traverse internal representation of model; write to text
stream

@ Jamda (cf. OAW)

Model To Code

Template Based

@ majority of tools
@ template consists of

o target text
@ splices of metacode

@ access source information
@ code selection
@ iteration

@ often user-defined scheduling through explicit template
calls
@ “LHS” implicit in access logic
e Java code
e declarative queries (OCL, XPath)

@ structure of generated code
@ no check for syntactic or semantic correctness
@ but independent of target language

Model To Model

@ less frequently supported in tools
@ but
e intermediate models useful for bridging abstraction gaps
@ = better modularity and maintainability
e useful for optimization, tuning, debugging
e generate different views

Model To Model

Direct Manipulation

@ Internal representation plus API

@ Some infrastructure

@ but: transformation rules from scratch
@ Jamda, OAW, using JMI

Model To Model

Relational

@ declarative constraints with executable semantics
@ connection to logic programming (matching, search,
backtracking)
@ QVTP distinguishes
e relations (bidirectional, non-executable specifications)

@ mappings (unidirectional, executable implementations of
relations)

@ side-effect free
@ strict separation between source and target

Model To Model

Graph Transformation

@ rich theory of transformations on typed, attributed, labeled
graphs
@ instances: VIATRA, ATOM, GreAT, UMLX, BOTL
@ rule:
e LHS and RHS graph patterns
e LHS: conditions
e RHS: computed target elements
@ concrete or (MOF) abstract syntax
@ concrete syntax much more concise
e default abstract sytnax works for any metamodel

@ LHS matched and replaced by RHS

Model To Model

Structure Driven

@ transformation splits in two phases

e create target hierarchy

e set attributes and references in the target
@ basic metaphor:

e copying model elements from source to target
e modify elements in between

Model To Model

XML

@ XMl is an XML language for serializing MOF models

@ Q: why not use XML transformation for model
transformation?

@ A: scalability
e XMl is unreadable and very verbose
e XSLT is unwieldy (see C. Cleaveland, Program Generators
with XML and Java)
@ generating XSLT from declarative spec is possible but
e poor efficiency because of XSLT's call-by-value (copying)
semantics

Status of QVT

@ RFP April 2002

@ Published spec November 2005 (but standardization not
yet finished)

@ (Code generation from MOF: new RFP April 2004,
ongoing)

@ Result for QVT:

e three different QVT languages
e only loosely connected

@ Issue reporting closed in March 2006
@ Finalization report expected in July 2006

@ Tool developers encouraged to provide prototype
implementations

Three QVT Languages

@ Relations
e declarative, using object patterns
@ creation and deletion of objects implicit
e automatic trace management
e graphical syntax
@ Core
e declarative, but no patterns
e based on EMOF and OCL
o define transformation and trace information as a MOF
metamodel
e too simple for practical use?
@ Operational Mappings
@ imperative DSL
e OCL as query language
e extended with imperative features
e two modes of use

@ all imperative
@ hybrid with some aspects in Relations or Core

Relationship of the QVT Languages

Relations | g | Black Box ! -
Mappings

defined in terms of

Operation Java
Mappings

Core

@ M2M Relations2Core (in Relations)
@ (not useable for practical implementation)

Example Use of QVT/Relations

Source Metamodel

1 l key
type
Field - vp1 FieldType

name: String

record fields

= Primitive
(=} Type
"" name: String

Entity | \.'Ir.:lp"': PhysicalQuantityType rd
Z
name: String name =,int’ or name = float’ or b|
e

units: String [1..7] name = ,long’ or name = ,doubl
[)

IntPQType | [FloatPQType| |LongPQType| |DoublePQType

key_of_entity

min: int min: float min: long min: double
max: int max: float max: long max: double

Example Use of QVT/Relations

Instance of Source Metamodel

<<entity>> b—b <<do>>
FeedData Pointing
<<key=> timestamp: Time position: Position
<<valuetype>> <<valuetype>> <<enumeration=>
Time Position AngleUnits
day: int azimuth: Angle deg
month: int altitude: Angle arcsec
year: int
hour: int
minutes: int . ;
SRR cdlcatPhysﬁﬂAQ;:antﬂyType»
e gle
millis: int

value: float {min=-1000, max=1000}
unit: AngleUnits

Example Use of QVT/Relations

Target Metamodel: Database Tables

’ AE] '

columns.includsAll '1

(key.columns) name: String
table columns
Table - Column
table type: String
columns 1
type = INTEGER' or type = ,REAL’ or
type = BIGINT or type = DOUBLE’
foreign
key | « key Keys
Key 0.1 ForeignKey [
key T 1 B) key.table <> table |

Example Use of QVT/Relations

Desired Transformation

@ All fields of a record are mapped to one ore more columns
depending on the field type:

e Primitive type — one primitive typed column.

e Value type — columns for each of its fields, where the
name of the encompassing field is propagated to
disambiguate the names of the nested fields.

e Physical quantity — one column for each unit, where the
name of the column incorporates the unit name and its type
is that of the concrete physical quantity.

@ Each ALMA entity is mapped to a DB table:

e All its fields lead to columns, as described before.

o lIts key leads to the table key.

@ Each ALMA-dependent part that is owned by an entity is
mapped to a DB table, where the name is a concatenation
of the entity name and the dependent part name:

e Fields — columns, as described before.

e Surrogate key of type INTEGER.

e The surrounding table for the entity refers to the dependant

Example Use of QVT/Relations

Generated Tables from Instance

1. Table FeedData:

key
key
key
key
key
key
key

timestamp_day : INTEGER
timestamp_month : INTEGER
timestamp_year : INTEGER
timestamp_hours : INTEGER
timestamp_minutes : INTEGER
timestamp_seconds : INTEGER
timestamp_millis : INTEGER

fk key FeedData_Pointing : INTEGER
2. Table FeedData_Pointing:

key

key FeedData_Pointing : INTEGER

position_azimuth_as_Angle_in_deg : REAL
position_azimuth_as_Angle_in_arcsec : REAL
position_altitude_as_Angle_in_deg : REAL
position_altitude_as_Angle_in_arcsec : REAL

Example Use of QVT/Relations

QVT/Relations

transformation alma2db(alma : AlmaMM, db : DbMM) {
}

@ Transformation execution

o verify specified relations
e modify target model

@ direction specified on invocation

Example Use of QVT/Relations

top relation EntityToTable {
prefix, eName : String;
checkonly domain alma entity:Entity {
name = eName
2
enforce domain db table:Table {
name = eName

h
where {

prefix = ";

RecordToColumns(entity, table, prefix);
}

Example Use of QVT/Relations

relation RecordToColumns {

checkonly domain alma record:Record {
fields = field:Field {}

2

enforce domain db table:Table {};

primitive domain prefix:String;

where {
FieldToColumns(field, table);

}

Example Use of QVT/Relations

Cross-Domain Constraints

top relation EntityKeyToTableKey {

checkonly domain alma entity:Entity {
key = entityKeyField:Field {}

%

enforce domain db table:Table {
key = tableKey:Key {}

%

when {
EntityToTable(entity, table);

}

where {
KeyRecordToKeyColumns(entityKeyField, table);

}
}

Example Use of QVT/Relations

Auxiliary Functions

function
AlmaTypeToDbType(almaType : String) : String {

if (almaType = ’int") then 'INTEGER’
else if (almaType = ’'float’) then 'REAL’
else if (almaType = ’'long’) then 'BIGINT’
else 'DOUBLE’

Example Use of QVT/Relations

Graphical Notation

EntityKeyToTableKey

<<domain>>
table:Table

<<domain>>
entity: Entity

alma: AImaM!ﬂOdb: DbMM
- —»
E

c
entityKeyField: Field tableKey: Key

keyColumn: Column

[— when
EntityToTable(entity, table)

[— where
Keyl ToKeyC: yField, table);

@ Graphical notation extending UML Object Diagrams
@ Current specification incomplete (primitive domains)
@ Does a graphical notation make sense?

Conclusions

Three languages — well-understood domain?
Requirements are not yet completely known

Current languages do not address all known requirements
Bidirectional mappings required?

Transformation development requires (as yet non-existent)
tools

Complex specification (too many people involved, too
much time)

Standard compliance? (Neither test-suite nor reference
implementation)

	Classification of Model Transformation Approaches
	Categories
	Model To Code
	Model To Model

	Status of QVT

