
Model Driven Architecture
Classification of Model Transformation

Approaches

Prof. Dr. Peter Thiemann

Universität Freiburg

21.06.2006

1 Classification of Model Transformation Approaches

2 Categories

Model To Code
Model To Model

3 Status of QVT



Classification of Model Transformation Approaches

Survey and categorization

Feature model to compare different approaches
Applying domain analysis to the following input data:

published in literature: GreAT, UMLX, ATOM, VIATRA,
BOTL, ATL, relational, oo logic programming
submitted to OMG: QVTP, CDI (CBOP, DSTC, IBM), AST+
(Alcatel, Softeam, Thales, TNI-Valiosys, Codagen
Corporation, . . . ), IOPT (Interactive Objects, Project
Technology), CS (Compuware Crop and Sun Microsystems)
open-source MDA tools: Jamda, AndroMDA, JET, FUUT-je,
GMT
commercial MDA tools: OptimaJ, ArcStyler, XDE, Codagen
Architect, b+m Generator Framework

From: Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Approaches. OOPSLA 2003

Workshop on Generative Techniques in the Context of Model-Driven Architectures. 2003.



Design Features of Model Transformation Approaches

Rule Application Strategy

Rule Scheduling

Rules organization

Tracing

Directionality

Source−Target Relationship

Rule Application Scoping

Transformation Rules

Model Transformation



Transformation Rules

Transformation Rules

Intermediate Structures

Parameterization

Bidirectionality

LHS/RHS Syntactic Separation

Variables Logic

LHS/RHS

Patterns

Untyped

Syntactically Typed

Semantically Typed

Non−Executable Executable

Imperative DeclarativeForm Syntax Typing

Strings

Terms

Graphs

Abstract

Graphical

Syntactically Typed

Semantically TypedConcrete

Textual

Untyped



Transformation Rules/2

General form of a rule: LHS→ RHS

LHS↔ source model; RHS↔ target model
Representation

(Meta)Variables range over model elements
Patterns are model fragments with variables
Logic: computations and constraints on model elements

Typing
syntactic: restricted to instances of a metamodel element
semantic: further model constraints



Source-Target Relationship

Existing TargetNew Target

Source−Target Relationship

In−Place (In Source) Update

Destructive Extension Only

separate target (CDI)
only in-place update (VIATRA, GreAT)
both possible (XDE)



Rule Application Strategy

Deterministic Non−Deterministic

Concurrent One−Point

Interactive

Rule Application Strategy

Rule may match multiple times⇒ strategy required

Traceability links



Rule Scheduling

Form

Rule Scheduling

Phasing

Rule Iteration

Fixpoint Iteration

Looping

Recursion

Interactive

Conflict Resolution

Non−Determinism

Explicit Condition

ExternalInternal

ExplicitImplicit Rule Selection

Order of rule application

Stratego is a language for expressing strategies and
scheduling for term rewriting



Rule Organization

Modularity Mechanisms

Rule Organization

Organizational Structure

Source−Oriented

Target−Oriented

Independent

Reuse Mechanisms

Inheritance Logical Composition



Traceability Links

Source Target All Rules Selected Rules

AutomaticManualSeparateModel

Storage Location Control

Dedicated Support

Tracing

some systems expect transformations to encode
traceability by themselves
separate storage preferable



Directionality

Unidirectional

Directionality

Bidirectional

Bidirectional Rules Complementary Pairs

declarative rules more likely to be invertible

lack of injectivity a problem

enumerating solutions, establish part of result



Categories of Model Transformations

model-to-code (model-to-text)
special case, but no metamodel; code-as-text
also documentation templates, XML
visitor vs. template

model-to-model
direct manipulation
relational
graph transformation
structure driven



Model To Code
Visitor Based

traverse internal representation of model; write to text
stream

Jamda (cf. OAW)



Model To Code
Template Based

majority of tools
template consists of

target text
splices of metacode

access source information
code selection
iteration

often user-defined scheduling through explicit template
calls
“LHS” implicit in access logic

Java code
declarative queries (OCL, XPath)

structure of generated code

no check for syntactic or semantic correctness

but independent of target language



Model To Model

less frequently supported in tools
but

intermediate models useful for bridging abstraction gaps
⇒ better modularity and maintainability
useful for optimization, tuning, debugging
generate different views



Model To Model
Direct Manipulation

Internal representation plus API

Some infrastructure

but: transformation rules from scratch

Jamda, OAW, using JMI



Model To Model
Relational

declarative constraints with executable semantics

connection to logic programming (matching, search,
backtracking)
QVTP distinguishes

relations (bidirectional, non-executable specifications)
mappings (unidirectional, executable implementations of
relations)

side-effect free

strict separation between source and target



Model To Model
Graph Transformation

rich theory of transformations on typed, attributed, labeled
graphs

instances: VIATRA, ATOM, GreAT, UMLX, BOTL
rule:

LHS and RHS graph patterns
LHS: conditions
RHS: computed target elements

concrete or (MOF) abstract syntax
concrete syntax much more concise
default abstract sytnax works for any metamodel

LHS matched and replaced by RHS



Model To Model
Structure Driven

transformation splits in two phases
create target hierarchy
set attributes and references in the target

basic metaphor:
copying model elements from source to target
modify elements in between



Model To Model
XML

XMI is an XML language for serializing MOF models

Q: why not use XML transformation for model
transformation?
A: scalability

XMI is unreadable and very verbose
XSLT is unwieldy (see C. Cleaveland, Program Generators
with XML and Java)
generating XSLT from declarative spec is possible but
poor efficiency because of XSLT’s call-by-value (copying)
semantics



Status of QVT

RFP April 2002

Published spec November 2005 (but standardization not
yet finished)

(Code generation from MOF: new RFP April 2004,
ongoing)
Result for QVT:

three different QVT languages
only loosely connected

Issue reporting closed in March 2006

Finalization report expected in July 2006

Tool developers encouraged to provide prototype
implementations



Three QVT Languages

Relations
declarative, using object patterns
creation and deletion of objects implicit
automatic trace management
graphical syntax

Core
declarative, but no patterns
based on EMOF and OCL
define transformation and trace information as a MOF
metamodel
too simple for practical use?

Operational Mappings
imperative DSL
OCL as query language
extended with imperative features
two modes of use

all imperative
hybrid with some aspects in Relations or Core



Relationship of the QVT Languages

Relations

Core

Black Box
Mappings

Operation
Mappings

defined in terms of

Java

M2M Relations2Core (in Relations)

(not useable for practical implementation)



Example Use of QVT/Relations
Source Metamodel



Example Use of QVT/Relations
Instance of Source Metamodel



Example Use of QVT/Relations
Target Metamodel: Database Tables



Example Use of QVT/Relations
Desired Transformation

All fields of a record are mapped to one ore more columns
depending on the field type:

Primitive type→ one primitive typed column.
Value type→ columns for each of its fields, where the
name of the encompassing field is propagated to
disambiguate the names of the nested fields.
Physical quantity→ one column for each unit, where the
name of the column incorporates the unit name and its type
is that of the concrete physical quantity.

Each ALMA entity is mapped to a DB table:
All its fields lead to columns, as described before.
Its key leads to the table key.

Each ALMA-dependent part that is owned by an entity is
mapped to a DB table, where the name is a concatenation
of the entity name and the dependent part name:

Fields→ columns, as described before.
Surrogate key of type INTEGER.
The surrounding table for the entity refers to the dependant
through a foreign key.



Example Use of QVT/Relations
Generated Tables from Instance

1. Table FeedData:
key timestamp_day : INTEGER
key timestamp_month : INTEGER
key timestamp_year : INTEGER
key timestamp_hours : INTEGER
key timestamp_minutes : INTEGER
key timestamp_seconds : INTEGER
key timestamp_millis : INTEGER
fk key_FeedData_Pointing : INTEGER

2. Table FeedData_Pointing:
key key_FeedData_Pointing : INTEGER
position_azimuth_as_Angle_in_deg : REAL
position_azimuth_as_Angle_in_arcsec : REAL
position_altitude_as_Angle_in_deg : REAL
position_altitude_as_Angle_in_arcsec : REAL



Example Use of QVT/Relations
QVT/Relations

transformation alma2db(alma : AlmaMM, db : DbMM) {
...
}

Transformation execution
verify specified relations
modify target model

direction specified on invocation



Example Use of QVT/Relations

top relation EntityToTable {
prefix, eName : String;
checkonly domain alma entity:Entity {

name = eName
};
enforce domain db table:Table {

name = eName
};
where {

prefix = ’’;
RecordToColumns(entity, table, prefix);

}
}



Example Use of QVT/Relations

relation RecordToColumns {
checkonly domain alma record:Record {

fields = field:Field {}
};
enforce domain db table:Table {};
primitive domain prefix:String;
where {

FieldToColumns(field, table);
}

}



Example Use of QVT/Relations
Cross-Domain Constraints

top relation EntityKeyToTableKey {
checkonly domain alma entity:Entity {

key = entityKeyField:Field {}
};
enforce domain db table:Table {

key = tableKey:Key {}
};
when {

EntityToTable(entity, table);
}
where {

KeyRecordToKeyColumns(entityKeyField, table);
}

}



Example Use of QVT/Relations
Auxiliary Functions

function
AlmaTypeToDbType(almaType : String) : String {

if (almaType = ’int’) then ’INTEGER’
else if (almaType = ’float’) then ’REAL’
else if (almaType = ’long’) then ’BIGINT’
else ’DOUBLE’

}



Example Use of QVT/Relations
Graphical Notation

Graphical notation extending UML Object Diagrams

Current specification incomplete (primitive domains)

Does a graphical notation make sense?



Conclusions

Three languages→ well-understood domain?

Requirements are not yet completely known

Current languages do not address all known requirements

Bidirectional mappings required?

Transformation development requires (as yet non-existent)
tools

Complex specification (too many people involved, too
much time)

Standard compliance? (Neither test-suite nor reference
implementation)


	Classification of Model Transformation Approaches
	Categories
	Model To Code
	Model To Model

	Status of QVT

