Model Driven Architecture
Action Semantics and Action Languages

Prof. Dr. Peter Thiemann

Universitat Freiburg

28.06.2006

Action Semantics

What is it?

@ OMG sanctioned approach to define the low-level behavior
of modeling elements
@ Action semantics defines how to perform a transformation
of the object graph (side effects)
@ a state transition
@ an operation
@ State chart models

e provide a higher-level view
o formalize object lifecycle
e orchestrate method invocations

@ contrast with:
OCL specifies what happens (no side effects)

e the result of an operation
@ postcondition after an operation

Action Semantics

@ An action is the fundamental unit of behavior specification.

@ An action takes a set of inputs and converts them into a set
of outputs [...].

@ The most basic action provides for
implementation-dependent semantics, [...].

@ [...] primitive actions are defined [so0] as to enable the
maximum range of mappings.

@ [...] they either carry out a computation or access object
memory

@ This approach enables clean mappings to a physical
model, [...].

@ In addition, any re-organization of the data structure will
leave the specification of the computation unaffected.

From the UML 2 superstructure 11.1

Action Semantics/Why have it?

@ build complete and precise models

@ formal proofs of correctness of a problem specification
@ high-fidelity model-based simulation and verification

@ enables reuse of domain models

@ stronger basis for model design and eventual coding

@ support code generation to multiple software platforms.

From “Software-platform-independent, Precise Action Specifications for UML", UML'99

Action Semantics/ldea

Basic idea: specify computation so that it is
@ data driven and
@ inherently parallel

@ (sequential execution through data dependency or explicit
control dependency)

@ independent of concrete syntax

Action Semantics/Action Specification

Basic building blocks:

Pins: input and output ports of an action; with type and
multiplicity
Variables: intermediate results

Data flow: connects the output pin of one action to the
input pin of another

Control flow: explicit ordering constraint for action pairs
Actions: for object manipulation, memory operations,
arithmetic, message passing, etc.

Procedures: packaging of actions with input and output
pins

Action Semantics/Action Execution

Life-cycle of an action
@ Waiting. Initial state after creation of action execution.

@ Ready. Action execution with all inputs available and all
control dependencies in state Complete .

@ Executing. Compute outputs from inputs.

@ Complete. Values of output pins determined, signal to
control-flow dependant actions.

Action Semantics/Types of Actions

@ Computation actions e.g. mathematical functions (left
undefined by standard)

@ Composite actions building blocks for control structures like
loops and conditionals

@ Read and write actions access, navigate, and modify
model-level constructs (objects, links, attribute slots, and
variables)

@ Collection actions = iterators for actions

Action Semantics/Example

then:Clause :_ReadlIsClassifiedObjectAction
test
clause
testOutput) ”
body result input | classifie
if:_ConditionalAction . Action . OutputPin| |_InputPin State:
Class
destination
sl variable - result - OutputPin| SoUrce :
Variable BeadVariableAction DataFlow

From: UML Action Semantics for Model Transformation Systems, Varré and Pataricza (uses obsolete 1.5

metamodel)

Action Semantics/Basic Pins

From Metamodel

(Fromie mel)

TypedElement MultiplicityElement

OutputPin

. +output
{ordered, union,
subsets owne dElement}

InputPin -1

+/input
{ordered, union,
subsets ownedElement}

Action

ValuePin

+value

ValueSpecification
(tromKernel)

= |

Action Semantics/Object Actions

Action InputPin
(fromBasicActions) (from Basichctions)

+firg /N 4 1 +second
{subsets input} {subsets input}

‘ 0.1 [XX

- DednoyObjectcion .
CreateObjectAction : ReadSelfAction
isDesiroyLinks : Boolean = false TestidentityAction
isDestroyOwnedObjects : Boolean = false

* 0.1
0.1 ¢ -
+result +result
+result . 4 e ts outoul
1 |+dasifier 1 | gubsetsoutput) 4 {subsets input} {su output} {subsetsoutput} | ,
3y +arget
Classifier OutputPin InputPin QutputPin QutputPin
(fomKemel) {from 5} B (from BasicActions) (from Basic Act ons)

Action Semantics

Conclusion

@ Action Semantics can describe object graph
transformations

@ Current support by tools rather poor (wrt editing, code
generation)

@ Too low-level for actual programming
(machine independent intermediate code)

@ = higher-level language required to define the meaning of
operations

@ = Action Languages

Action Languages

@ “Executable UML’
(Mellor and Balcer, Addison Welsey, 2002)
@ Programming Languages geared towards specifying
detailed operational behavior
e Specify algorithmic aspects
e Abstract from implementation choices/design decisions
@ Operate directly on UML data model
@ Independence of the SW platform

@ Nno concrete representation
@ no pointer manipulation
@ no tricks

Action Languages

Types from a Class Diagram

@ Types

e All modeling elements of type UML::Classifier
o Primitive types

@ Multiplicity is respected
(often restricted to multiplicities: 0.1 ,1,*,1..*)

@ Unigueness

@ Ordering

@ Attributes can be read and written

@ Local variables treated like attributes

Action Languages

Main Mapping Choices

@ Aclass may map to

@ a class declaration in an OO programming language
a structure declaration in a programming language
a CORBA IDL

an EJB

a database table

@ An association may map to
e a link between objects
@ a pointer
@ a hashtable
e a database table
@ A generalization may map to

@ a subclass definition
e alink

Action Languages

Object Creation and Deletion

@ Manipulate instances of classes: objects
@ Create:

thePub = new Publisher
{name="AW", address="Boston"};

just creation, no constructor
@ Read attribute:
thePub.name
@ Write attribute:
thePub.name = "MGH";
@ Delete:
delete thePub;

o debatable if this should be left to the programmer

Action Languages

Link Creation and Deletion

@ Manipulate instances of associations: links

@ Create:

association .add{ end=obj-ref , end=obj-ref h
@ Delete:

association .delete{ end=obj-ref , end=obj-ref h
@ Traverse:

obj-ref . association
obj-ref . association-end
obj-ref . class

@ N-ary associations?
Association classes?

Action Languages

Object Selection Expressions

@ over members of classes

for(x : class) { ... }
for(x : class) where condition { ..}

@ over navigable associations

for(class x : obj-ref .association) { ..}
for(class x : objref . association)
where condition { ..}

@ over associations

for end=obj-ref , end=obj-ref } : association)
{ ..}
for{ end=obj-ref , end=obj-ref } : association)

where condition { ..}

Example: Using the Action Language

Data Model of a Bookshop

Author

Category . Book
name title
abstract
price
Orderltem
quantity
Order
Address Customer
street 1 name
town password
country

name

CreditCard

cardnumber
expiry

Example: Using the Action Language

Auxiliary Operation

Category getCategory (String category) {
for (cat : Category)
where cat.name = category {
return cat;

}

return new Category { name= category };

}

Example: Using the Action Language

Add a New Book

Book newBook (String title, Number price,
String category, String author) {

Author theAuthor =

new Author { name= author };
Category theCategory =

getCategory (category);
Book theBook =

new Book { title= title, price= price },
BookHasAuthor.add

{ book= theBook, author= theAuthor },
BookHasCategory.add

{ book= theBook, category= theCategory };
return theBook;

Example: Using the Action Language

A Database Mapping

@ All classes mapped to database table
e Object reference mapped to primary key value
e for (...) where mapped to select
@ new mapped to insert
@ Generic choice for associations: table with foreign keys
e add mapped to insert
e traversal mapped to select
e delete mapped to delete

Support for Relations in Programming Languages

@ Action Languages are unusual compared to other
programming languages where
e Support for objects, inheritance etc is abundant
e Support for relations is virtually non-existent!
@ Notable exceptions
e James Rumbaugh. Relations as Semantic Constructs in an
Object-Oriented Language. OOPSLA, 1987.
e James Noble, John Grundy. Explicit Relationships in Object
Oriented Development. TOOLS, 1995.
e Gavin Bierman, Alisdair Wren. First-Class Relationships in
an Object-Oriented Language. ECOOP, 2005.

Relations in Programming Languages

Why?

@ Common agreement: relations are useful for conceptual
modeling

@ Later phases elide relations
e Relations are implemented on an ad-hoc basis
@ Collaborating methods and attributes in participating classes
@ Collection class “Relation” holding sets of n-tuples
e Relationship patterns exist
e Relations implemented by model transformation

@ writers of protected regions must know the transformation:
@ name conventions
@ attribute types

Relationship Patterns

Basic Relationship Patterns (James Noble)

Pattern | Problem

Relationship || Unidirectional, many-one or one-one
as Attribute relationship

Relationship | Large, complex relationship

Object

Collection Unidirectional, one-many relationship
Object

Active Globally important one-one relation-
Value ship

Mutual Bidirectional relationship

Friends

Relationship Patterns

Relationship as Attribute

@ Scope: unidirectional, one-one or many-one relationships
@ Very common
@ Changes only of local importance

@ Bookshop example:

e Book — Category
@ Customer — CreditCard
@ Customer — Address

= Represent by an attribute in the source class

Relationship Patterns

Relationship Object

@ Scope: large, complex relationships
e Many patrticipating objects (peers)
e Bidirectional
@ Implementation using attributes possible but

e the relationship is dispersed
e itis hard to spot in the program
e thus hard to maintain

@ The relationship object

e contains all methods and attributes to maintain the relation

@ may contain subordinate objects which are not visible
outside

e mediates between all objects participating in the relation

@ Bookshop example: Orderltem « Order

Relationship Patterns

Collection Object

@ Scope: unidirectional, one-many relationships

@ Very common

= Represent by an attribute in the “one” object which holds
the “many” objects in a collection object

@ Example:

e Book — Author
@ ... but the other direction is also needed in this case

@ Particular kind of Relationship Object

Relationship Patterns

Active Value

@ One-one relationship
@ With notification if one of the related objects changes

@ Example: Window is in one-one relationship with the value
of each input field

@ Active Value: An object that reifies a single variable
@ With setter and getter and change detection via Observer

Relationship Patterns

Mutual Friends

@ Bidirectional Relationship

@ All participating objects are equally important

@ Change at one end requires change at other end
@ Example: Book < Author

= Mutual Friends has to steps

e Splitting the relationship in two unidirectional ones
e Keep the moieties consistent

@ one end is the leader, the other the follower
@ leader administers all changes
@ the follower delegates all changes to the leader
@ Simplest instance: bidirectional one-one relationship
represented by two attributes

Conclusion

@ Are patterns good or bad?
@ Patterns point to drawbacks of programming languages
e Composite Pattern: lack of sum types
o Visitor Pattern: lack of suitable extension mechanisms
e Relationship Patterns: lack of support for patterns in PLS
@ Even worse
e if other target models are considered (e.g. database tables)
o if multiple target models are considered (e.g., a relation
between a database entity and a POJO)
@ Relationship manipulation should be part of an action
language

	Action Semantics
	Action Languages
	Excursion: Support for Relations in Programming Languages

