
Model Driven Architecture
Action Semantics and Action Languages

Prof. Dr. Peter Thiemann

Universität Freiburg

28.06.2006

Action Semantics
What is it?

OMG sanctioned approach to define the low-level behavior
of modeling elements
Action semantics defines how to perform a transformation
of the object graph (side effects)

a state transition
an operation

State chart models
provide a higher-level view
formalize object lifecycle
orchestrate method invocations

contrast with:
OCL specifies what happens (no side effects)

the result of an operation
postcondition after an operation

Action Semantics

An action is the fundamental unit of behavior specification.

An action takes a set of inputs and converts them into a set
of outputs [. . .].

The most basic action provides for
implementation-dependent semantics, [. . .].

[. . .] primitive actions are defined [so] as to enable the
maximum range of mappings.

[. . .] they either carry out a computation or access object
memory

This approach enables clean mappings to a physical
model, [. . .].

In addition, any re-organization of the data structure will
leave the specification of the computation unaffected.

From the UML 2 superstructure 11.1

Action Semantics/Why have it?

build complete and precise models

formal proofs of correctness of a problem specification

high-fidelity model-based simulation and verification

enables reuse of domain models

stronger basis for model design and eventual coding

support code generation to multiple software platforms.

From “Software-platform-independent, Precise Action Specifications for UML”, UML’99

Action Semantics/Idea

Basic idea: specify computation so that it is

data driven and

inherently parallel

(sequential execution through data dependency or explicit
control dependency)

independent of concrete syntax

Action Semantics/Action Specification

Basic building blocks:

Pins: input and output ports of an action; with type and
multiplicity

Variables: intermediate results

Data flow: connects the output pin of one action to the
input pin of another

Control flow: explicit ordering constraint for action pairs

Actions: for object manipulation, memory operations,
arithmetic, message passing, etc.

Procedures: packaging of actions with input and output
pins

Action Semantics/Action Execution

Life-cycle of an action

Waiting. Initial state after creation of action execution.

Ready. Action execution with all inputs available and all
control dependencies in state Complete .

Executing. Compute outputs from inputs.

Complete. Values of output pins determined, signal to
control-flow dependant actions.

Action Semantics/Types of Actions

Computation actions e.g. mathematical functions (left
undefined by standard)

Composite actions building blocks for control structures like
loops and conditionals

Read and write actions access, navigate, and modify
model-level constructs (objects, links, attribute slots, and
variables)

Collection actions⇒ iterators for actions

Action Semantics/Example

From: UML Action Semantics for Model Transformation Systems, Varró and Pataricza (uses obsolete 1.5

metamodel)

Action Semantics/Basic Pins
From Metamodel

Action Semantics/Object Actions

Action Semantics
Conclusion

Action Semantics can describe object graph
transformations

Current support by tools rather poor (wrt editing, code
generation)

Too low-level for actual programming
(machine independent intermediate code)

⇒ higher-level language required to define the meaning of
operations

⇒ Action Languages

Action Languages

“Executable UML”
(Mellor and Balcer, Addison Welsey, 2002)
Programming Languages geared towards specifying
detailed operational behavior

Specify algorithmic aspects
Abstract from implementation choices/design decisions

Operate directly on UML data model
Independence of the SW platform

no concrete representation
no pointer manipulation
no tricks

Action Languages
Types from a Class Diagram

Types
All modeling elements of type UML::Classifier
Primitive types

Multiplicity is respected
(often restricted to multiplicities: 0..1 , 1, * , 1..*)

Uniqueness

Ordering

Attributes can be read and written

Local variables treated like attributes

Action Languages
Main Mapping Choices

A class may map to
a class declaration in an OO programming language
a structure declaration in a programming language
a CORBA IDL
an EJB
a database table
. . .

An association may map to
a link between objects
a pointer
a hashtable
a database table

A generalization may map to
a subclass definition
a link

Action Languages
Object Creation and Deletion

Manipulate instances of classes: objects

Create:

thePub = new Publisher
{name="AW", address="Boston"};

just creation, no constructor

Read attribute:

thePub.name

Write attribute:

thePub.name = "MGH";

Delete:

delete thePub;

debatable if this should be left to the programmer

Action Languages
Link Creation and Deletion

Manipulate instances of associations: links

Create:

association .add{ end=obj-ref , end=obj-ref };

Delete:

association .delete{ end=obj-ref , end=obj-ref };

Traverse:

obj-ref . association
obj-ref . association-end
obj-ref . class

N-ary associations?

Association classes?

Action Languages
Object Selection Expressions

over members of classes

for(x : class) { ... }
for(x : class) where condition { ... }

over navigable associations

for(class x : obj-ref . association) { ... }
for(class x : obj-ref . association)

where condition { ... }

over associations

for({ end=obj-ref , end=obj-ref } : association)
{ ... }

for({ end=obj-ref , end=obj-ref } : association)
where condition { ... }

Example: Using the Action Language
Data Model of a Bookshop

Category

name

Book

title
abstract
price

Author

name

OrderItem

quantity

Address

street
town
country

Order

Customer

name
password

CreditCard

cardnumber
expiry

1

1

*

*1 * 1..*

1 1 1 1

1

*

*

Example: Using the Action Language
Auxiliary Operation

Category getCategory (String category) {
for (cat : Category)

where cat.name = category {
return cat;

}
return new Category { name= category };

}

Example: Using the Action Language
Add a New Book

Book newBook (String title, Number price,
String category, String author) {

Author theAuthor =
new Author { name= author };

Category theCategory =
getCategory (category);

Book theBook =
new Book { title= title, price= price };

BookHasAuthor.add
{ book= theBook, author= theAuthor };

BookHasCategory.add
{ book= theBook, category= theCategory };

return theBook;
}

Example: Using the Action Language
A Database Mapping

All classes mapped to database table
Object reference mapped to primary key value
for (...) where mapped to select
new mapped to insert

Generic choice for associations: table with foreign keys
add mapped to insert
traversal mapped to select
delete mapped to delete

Support for Relations in Programming Languages

Action Languages are unusual compared to other
programming languages where

Support for objects, inheritance etc is abundant
Support for relations is virtually non-existent!

Notable exceptions
James Rumbaugh. Relations as Semantic Constructs in an
Object-Oriented Language. OOPSLA, 1987.
James Noble, John Grundy. Explicit Relationships in Object
Oriented Development. TOOLS, 1995.
Gavin Bierman, Alisdair Wren. First-Class Relationships in
an Object-Oriented Language. ECOOP, 2005.

Relations in Programming Languages
Why?

Common agreement: relations are useful for conceptual
modeling
Later phases elide relations

Relations are implemented on an ad-hoc basis
Collaborating methods and attributes in participating classes
Collection class “Relation” holding sets of n-tuples

Relationship patterns exist
Relations implemented by model transformation

writers of protected regions must know the transformation:
name conventions
attribute types

Relationship Patterns
Basic Relationship Patterns (James Noble)

Pattern Problem
Relationship
as Attribute

Unidirectional, many-one or one-one
relationship

Relationship
Object

Large, complex relationship

Collection
Object

Unidirectional, one-many relationship

Active
Value

Globally important one-one relation-
ship

Mutual
Friends

Bidirectional relationship

Relationship Patterns
Relationship as Attribute

Scope: unidirectional, one-one or many-one relationships

Very common

Changes only of local importance
Bookshop example:

Book→ Category
Customer→ CreditCard
Customer→ Address

⇒ Represent by an attribute in the source class

Relationship Patterns
Relationship Object

Scope: large, complex relationships
Many participating objects (peers)
Bidirectional

Implementation using attributes possible but
the relationship is dispersed
it is hard to spot in the program
thus hard to maintain

The relationship object
contains all methods and attributes to maintain the relation
may contain subordinate objects which are not visible
outside
mediates between all objects participating in the relation

Bookshop example: OrderItem↔ Order

Relationship Patterns
Collection Object

Scope: unidirectional, one-many relationships

Very common

⇒ Represent by an attribute in the “one” object which holds
the “many” objects in a collection object
Example:

Book→ Author
. . . but the other direction is also needed in this case

Particular kind of Relationship Object

Relationship Patterns
Active Value

One-one relationship

With notification if one of the related objects changes

Example: Window is in one-one relationship with the value
of each input field

Active Value: An object that reifies a single variable

With setter and getter and change detection via Observer

Relationship Patterns
Mutual Friends

Bidirectional Relationship

All participating objects are equally important

Change at one end requires change at other end

Example: Book↔ Author
⇒ Mutual Friends has to steps

Splitting the relationship in two unidirectional ones
Keep the moieties consistent

one end is the leader, the other the follower
leader administers all changes
the follower delegates all changes to the leader

Simplest instance: bidirectional one-one relationship
represented by two attributes

Conclusion

Are patterns good or bad?
Patterns point to drawbacks of programming languages

Composite Pattern: lack of sum types
Visitor Pattern: lack of suitable extension mechanisms
Relationship Patterns: lack of support for patterns in PLS

Even worse
if other target models are considered (e.g. database tables)
if multiple target models are considered (e.g., a relation
between a database entity and a POJO)

Relationship manipulation should be part of an action
language

	Action Semantics
	Action Languages
	Excursion: Support for Relations in Programming Languages

