
Exam
Essentials of Programming Languages, 2023 WS

Prof. Dr. Peter Thiemann
Hannes Saffrich

March 3, 2024

Submission Deadline: March 31, 2024 at 23:59 (via email1)

Overview
The exam is divided into four parts. Each part provides you with the specifica-
tion of a language (syntax, typing, semantics) in Agda-code, and requires you
to prove that this language satisfies certain properties. To help you prove these
properties, we provide you with a proof skeleton, i.e. the types of the lemmas,
which we used to prove the properties ourselves.

Each part has its own subdirectory, which contains the specification of the
language (e.g. Exam/Part1/Specification.agda) and for each task (property
you need to prove) a separate .agda-file containing the statement of the property
and its lemmas.

The individual parts are summarized as followed:

• In Part 1 (20 points) you are presented with two simple languages that
consist only of natural numbers and addition and your task is to prove
properties, which relate the two languages and their semantics.

• In Part 2 (20 points) your task is to prove type soundness for a simply
typed lambda calculus with the unit type.

• In Part 3 (45 points) your task is to prove type soundness for a minimal
dependently typed lambda calculus.

• In Part 4 (15 points) your task is to prove type soundness for the language
from Part 3, but extended with dependent pairs and an equality type.

The lambda calculi in parts 2 to 4 are formalized with intrinsic scoping (sim-
ilar as we did in the Untyped chapter) and extrinsic typing (see the recording
of the last tutorial session). Part 2 serves as an introduction to this style of
formalization. The parts are designed to be worked on in the order that they’re
presented and increase in difficulty. Part 3 probably has the largest cognitive
overhead as you need to think yourself into a larger system with many defini-
tions.

1saffrich@informatik.uni-freiburg.de

1

saffrich@informatik.uni-freiburg.de

Rules
• It is not allowed to change the specification of the languages in any way,

i.e. the Specification.agda files must remain unchanged.

• It is not allowed to change the properties you need to prove, e.g. the type
of progress in Exam/Part1/Progress.agda must remain unchanged.

• It is not allowed to use postulates, except for functional extensionality,
which is already defined in the Specification.agda files of the parts,
where this postulate is relevant.

• Proving the property required by a task completely gives full points for
that task, independently of code style and code complexity. The property
is proven completely, if there are no holes left and also no unsolved meta
variables or constraints (code highlighted with yellow background, e.g.
from implicit arguments that Agda cannot resolve).

• If you are not able to finish the proof of the property required by a task,
then you may still get partial credit for progress on the properties and
the lemmas we provided. It also counts as progress if you successfully use
other lemmas we provided, even if you weren’t able to prove those other
lemmas themselves.

• It is allowed to change or ignore the lemmas we provide you, e.g. in
Exam/Part1/Preservation.agda everything except the preservation the-
orem could be changed or deleted. However, this implies that partial
progress may not be graded: if you are not able to finish a task, then
it is up to us to decide if your own lemmas actually contribute in a mean-
ingful way to the task. Hence, we strongly recommend to use the proof
skeleton we provided.

• All parts together are worth 100 points in total. To pass the exam, at
least 50 points have to be achieved.

Hints
In some files you may notice the following comment in the first line:

{-# OPTIONS --allow-unsolved-metas #-}

This comment is a pragma, which allows you to import files that still have holes
in them, so you can do the proofs in any order you wish.

2

Part 1: Natural Numbers and Addition
The file Exam/Part1/Specification.agda defines two tiny languages that sup-
port only natural numbers and addition.

The first language models natural number literals as primitive terms (the #_
constructor of Expr), whereas the second language models them via zero and
successor terms (the ‘suc and ‘zero constructors of Expr’).

For both languages a small-step semantics (_↪→_) and a denotational se-
mantics (J_K) are provided. The denotational semantics is basically an inter-
preter for the languages written in Agda, i.e. a function that maps terms to
natural numbers.

Furthermore, translation functions are defined, which allow to convert terms
between the two languages.

We want to show for each language that the denotational semantics behaves
like the small-step semantics, as well as that the translation functions preserve
semantics, i.e. that a term in one language evaluates to the same number as its
translation evaluates to in the other language.

Your Tasks

• Prove all the lemmas in Exam/Part1/Properties.agda;
Points: 20; Difficulty: ⋆

3

Part 2: STLC with Unit
Intrinsic Typing

In the DeBruijn chapter of the PLFA book, we saw a formalization of a simply
typed lambda calculus with intrinsically typed terms. Intrinsically typed means
that there are no separate definitions of terms and the typing relation, but
instead a type of type-correct terms is defined directly:

⊢ : Context → Type → Set

Given Γ : Context and t : Type, the type Γ ⊢ t describes all terms, which have
type t assuming their free variables have types according to Γ. This means there
is no way to even talk about terms, which are ill-typed, e.g. a term that uses a
number as a function like 2 · 3.

As a consequence, not only the definition of terms and the typing relation
are merged into one definition, but all operations and relations, we define on
terms, also implicitly state that they preserve the typings of terms, e.g.

• the operation of substitution also states that if we substitute a well-typed
term into another well-typed term, then the result will again be a well-
typed term.

• the definition of the small-step reduction relation does not just relate terms
with terms, but well-typed terms with well-typed terms, which amounts
to proving the preservation lemma, i.e. that if a well-typed term reduces,
then the result is again a well-typed term.

While formalizing a language using intrinsic typing has many upsides, it also
has the downside that it is not possible to talk about untyped terms anymore
(which is sometimes necessary), and that the specification of the language is
mixed up with the proofs about its properties, which can make it harder to
see if the language is actually specified correctly. Furthermore, languages with
dependent types cannot be formalized with intrinsic types at all.

Extrinsic Typing with Intrinsic Scoping

In the Lambda and Properties chapters of the PLFA book, we saw a simply typed
lambda calculus with extrinsically typed terms. Extrinsically typed means that
separate definitions are used for terms and the typing relation. Consequently,
for each operation or relation we define, we need to prove a separate lemma,
which states that the operation or relation preserves types, e.g. if we apply a
well-typed substitution to a well-typed term, the result will again be a well-typed
term.

In this exam, we also use extrinsic typing, but instead of representing vari-
ables as strings, as we did in the Lambda chapter, we use the DeBruijn repre-
sentation for variables, similar as we did in the Untyped chapter.

In contrast to the Untyped chapter, we model intinsically scoped terms not
as intrinsically typed terms with a trivial type system, where every term has

4

the same “fake type” ⋆, but simply index our Term type with a natural number
that specifies how many different free variables the term has:

Term : N → Set

Consequently, Term 0 represents all terms with no free variables, i.e. complete
programs without undefined variables. If a lambda term has type Term n, then
its body has type Term (suc n), since it is allowed to use one additional variable.
Since variables are represented as DeBruijn-Indices, a variable term of type Term
n corresponds to a number between 0 and n-1. To describe natural numbers
between 0 and n-1, we use the type Fin n as defined in Exam/Util/Fin.agda.

To properly define the typing relation, we also need to add a new index to
the typing context:

Context : N → Set

A Context n represents a list of exactly n Types. The additional index for the
length of the context allows us to ensure that in the typing relation the context
Γ provides types for each of the free variables in the term:

⊢:_ : ∀ {n : N} → Context n → Term n → Type → Set

A value of type Γ ⊢ e : t is a proof that the term e has type t assuming the free
variables of e have the types described in the context Γ.

Hint: Modelling intrinsically-scoped terms this way was also discussed in
the last tutorial session. See the recording for more information.

Your Tasks

• Prove that the language satisfies the progress property.
File: Exam/Part2/Progress.agda; Points: 5; Difficulty: ⋆

• Prove that the language satisfies the preservation property.
File: Exam/Part2/Preservation.agda; Points: 15; Difficulty: ⋆

5

Part 3: Minimal Dependent Types
During this semester, we have been using Agda – a dependently-typed language
– to model other languages and prove properties about them. However, we never
looked at how a dependently-typed language itself can be modeled. The rest of
this exam is concerned with doing exactly that: in this part, we start out with
a minimal dependently typed language and then extend it in Part 4 and 5 with
dependent pairs and an equality type.

Types are Terms

The languages, which we modeled during this course, always had a clear dis-
tinction between terms and types, i.e. we had one data definition for terms, one
for types, and the typing relation was relating terms with types:

data Term : Set where ...
data Type : Set where ...
data _⊢_:_ : Context → Term → Type → Set where ...

In dependently typed languages this distinction is gone: types are also consid-
ered terms, and the typing relation relates terms with terms:

data Term : Set where ...
data _⊢_:_ : Context → Term → Term → Set where ...

Which terms are conceptionally considered as types is entirely up to how the
typing relation is defined.

Syntax

The syntax of our language is defined by the following grammar:

t ::= x | λx.t | t t | ∀(x : t) → t | Set

A term t can be either a variable x, a lambda term λx.t, a function application
t1 t2, a dependent function type ∀(x : t1) → t2, or the type of types Set.

A dependent function type ∀(x : t1) → t2 allows x to be used in t2, just as
we are used to it in Agda. If x is not used in t2, then ∀(x : t1) → t2 is equivalent
to the non-dependent function type t1 ⇒ t2, which we already know from the
simply typed lambda calculus. Since our language is very minimalistic, the only
way that we can write a dependent function, which actually uses x in t2 is by
writing polymorphic functions. Consider for example the polymorphic identity
function in Agda:

id : ∀ (A : Set) → A → A
id A x = x

This identity function corresponds in our language to the term λA.λx.x, to
which our typing relation can assign the type ∀(A : Set) → ∀(x : A) → A.

6

Typing

The typing relation _⊢_:_ is defined by the following inference rules:

TVar
(x : t) ∈ Γ

Γ ⊢ x : t

TLam
Γ ⊢ t1 : Set Γ, x : t1 ⊢ e : t2

Γ ⊢ λx.e : ∀(x : t1) → t2

TApp
Γ ⊢ e1 : ∀(x : t1) → t2 Γ ⊢ e2 : t1

Γ ⊢ e1 e2 : t2[x 7→ e2]

TAll
Γ ⊢ t1 : Set Γ, x : t1 ⊢ t2 : Set

Γ ⊢ ∀(x : t1) → t2 : Set

TSet
Γ ⊢ Set : Set

TConv
Γ ⊢ e : t1 t1 ≈ t2

Γ ⊢ e : t2

The rule TVar is exactly as we know it from the simply typed lambda
calculus.

The rule TAbs is similar as in the simply typed lambda calculus, but requires
additionally that the function’s parameter type t1 has type Set.2 Just like in
Agda, if a term has type Set, this means that the term is conceptionally a type,
and not some other term like a lambda-function.

The rule TApp is similar as in the simply typed lambda calculus, but con-
cludes a different return type for the application. This is because e1 has a
dependent function type, so t2 may contain the variable x, which stands for the
argument to which we apply e1. Consequently, if we apply e1 to the argument
e2, we don’t just get back a value of type t2, but of t2 where x has been replaced
by the argument e2. This behavior can also be observed in our identity example
in Agda:

id-nat : N → N
id-nat = id N

Here, the application is id N, where id has type ∀(A : Set) → ∀(x : A) → A, so
t2 is ∀(x : A) → A and the result type of the application is t2[A 7→ N], which is
∀(x : N) → N.

The rule TAll states that a dependent function type has type Set, if both
its parameter type t1 and its return type t2 have type Set. As the return type
t2 is allowed to use x, we need to extend the typing context Γ with the type of
x, which follows the same reasoning as for the body of a lambda term in TLam.

The rule TSet states that Set itself is a type.3 This is important for example
2If you are wondering why we don’t require also t2 to have type Set: this is because our

typing relation enjoys the invariant that if all types in Γ have type Set and Γ ⊢ e : t, then
also t has type Set. This makes it sufficient to assert only that the types that we put into the
typing context have type Set.

3Here we differ from Agda, where Set has type Set1, and Set1 has type Set2 and so on.
Having Set : Set makes our language logically inconsistent as it allows us to encode paradoxes
aka non-terminating programs. We do this only to keep the language minimal, but it is
not very complicated to add a universe hierarchy to the formalization to make it logically
consistent again.

7

for our identity function, because the rule TAll says that ∀(A : Set) → ... is
only a type, if Set is a type.

The rule TConv states that if a term has type t1, then we can also give it
a type t2, if t1 is convertible to t2 (written as t1 ≈ t2). This flexibility is crucial
for dependent types and can also be observed in Agda:

example : 2 + 2 ≡ 4
example = refl {N} {4}

For clarity, we explicitly wrote the implicit arguments for refl, which Agda nor-
mally infers for us. Here the term refl {N} {4} has type 4 ≡ 4, but the type
we gave to example is 2 + 2 ≡ 4. While the types 4 ≡ 4 and 2 + 2 ≡ 4 are
syntactically not the same, they are what we call convertible or definitionally
equal, i.e. they are terms which in zero or more steps reduce to the same term.
To define the convertibility relation _≈_ formally, we first need to introduce
the semantics.

Semantics

The small-step reduction relation _↪→_ is defined by the following inference
rules:

RBetaLam
(λx.t1) t2 ↪→ t1[x 7→ t2]

RXiLam
t ↪→ t′

λx.t ↪→ λx.t′

RXiApp1
t1 ↪→ t′1

t1 t2 ↪→ t′1 t2

RXiApp2
t2 ↪→ t′2

t1 t2 ↪→ t1 t′2

RXiAll1
t1 ↪→ t′1

(∀(x : t1) → t2) ↪→ (∀(x : t′1) → t2)

RXiAll2
t2 ↪→ t′2

(∀(x : t1) → t2) ↪→ (∀(x : t1) → t′2)

We have one β-reduction rule, RBetaLam, which is just as in the simply
typed lambda calculus: an application eliminates a lambda term via substitu-
tion. The rest are congruency rules, which allow for the reduction in subterms.
We allow full reduction as in the Untyped chapter of the PLFA book, i.e. there
is no evaluation order enforced with additional Value requirements, and we also
allow reduction in the body of a lambda term via RXiLam. As types are terms,
we have the RXiAll1 and RXiAll2 rules to allow reduction in the subterms
of a dependent function type.

We define the reflexive, transitive closure of the reduction relation as usual,
i.e. t1 ↪→∗ t2 means that t2 can be reached from t1 by taking zero or more
↪→-steps.

Two terms are convertible, t1 ≈ t2, iff there exists some term t, such that
t1 ↪→∗ t and t2 ↪→∗ t.

As we allow reduction in the body of a lambda term, we need to define
values mutually recursive with neutral terms as in the Untyped chapter of the
PLFA book. The intuitive reason for this is that if our term contains a free

8

variable, then this free variable might block reduction, so we need to generalize
our notion of Value.

VLam
Value t

Value (λx.t)

VAll
Value t1 Value t2
Value (∀(x : t1) → t2)

VSet
Value Set

VNeu
Neutral t
Value t

NVar
Neutralx

NApp
Neutral t1 Value t2

Neutral (t1 t2)

Properties

We want to prove type soundness, i.e. that the type system correctly describes
the semantics. As we saw during this course, this consists in proving a progress
and a preservation lemma:

Lemma (Progress). If ∅ ⊢ e : t, then either e is a value or there exists some e′

such that e ↪→ e′.

Lemma (Preservation). If ∅ ⊢ e : t and e ↪→ e′, then ∅ ⊢ e′ : t.

However, as we are using a semantics, which allows to reduce in the body of
a lambda term, we need to generalize these lemmas, such that they also apply
to terms with free variables by allowing an arbitrary typing context:

Lemma (Progress). If Γ ⊢ e : t, then either e is a value or there exists some e′

such that e ↪→ e′.

Lemma (Subject Reduction). If Γ ⊢ e : t and e ↪→ e′, then Γ ⊢ e′ : t.

The generalized version of preservation is called subject reduction.

Proof Structure

The dependencies between the .agda-files are shown in the following graph:

Progress.agda

SubjectReduction.agda

Composition.agda

Confluence.agda

ConversionProperties.agda

Inversion.agda SubstitutionPreservesTyping.agda

9

We will now motivate some of the required lemmas and dependencies.

• In Composition.agda, we prove lemmas about the interaction of multiple
substitutions. For example, it doesn’t matter if we first apply a substitu-
tion to a term and then weaken it, or if we first weaken the term and then
apply a substitution to it, that has been lifted with exts over the variable
introduced by the weakening:

ren wk (sub σ e) ≡ sub (exts σ) (ren wk e)

The standard way of proving such interaction lemmas is by making use of
the fact that substitutions and renamings can be composed:

r◦s : ∀ {n1 n2 n3} → Ren n2 n3 → Sub n1 n2 → Sub n1 n3
(ρ1 r◦s σ2) x = ren ρ1 (σ2 x)

If we have a renaming ρ1 and a substitution σ2, then their composition ρ1
s◦r σ2 is a substitution, which first performs the substitution σ2 and then
the renaming ρ1. This intuition is formalized by the corresponding fusion
lemma:

ren ρ1 (sub σ2 e) ≡ sub (ρ1 r◦s σ2) e

With the help of the fusion lemmas, we can prove the above interaction
lemma by proving that

wk r◦s σ ≡ exts σ s◦r wk

As substitutions are functions, we need to make use of the functional
extensionality axiom (PLFA, chapter Isomorphisms).

• In Confluence.agda, we prove that our semantics is confluent, i.e. that
if t ↪→∗ t1 and t ↪→∗ t2, then there exists some t′, such that t1 ↪→∗ t′ and
t2 ↪→∗ t′. The proof of confluence follows the Confluence chapter from the
PLFA book very closely.

• In ConversionProperties.agda, we prove various properties about the
convertibility relation _≈_. We prove that convertibility is an equivalence
relation, i.e. it is reflexive, symmetric, and transitive, and how convert-
ibility interacts with substitution.

Applying a substitution to two convertible terms, yields again convertible
terms:

≈-sub : ∀ {m n} {e e’ : Term m} (σ : Sub m n)
→ e ≈ e’
→ sub σ e ≈ sub σ e’

10

Substituting two convertible terms into another term, yields again con-
vertible terms:

≈σ-sub1 : ∀ {n} {e : Term (suc n)} {e1 e2 : Term n}
→ e1 ≈ e2
→ e [e1] ≈ e [e2]

Typing is preserved along convertible types in the context:

≈-Γ-⊢1 : ∀ {n} {Γ : Context n} {t1 t2 : Term n} {e t : Term (suc n)}
→ t1 ≈ t2
→ Γ , t1 ⊢ e : t
→ Γ , t2 ⊢ e : t

Each of these lemmas require multiple sub-lemmas, which are also part of
ConversionProperties.agda.

• In SubstitutionPreservesTyping.agda, we prove the ⊢sub lemma. This
file is closely related to Part2/Preservation.agda. As we are working
with dependent types, the ⊢sub lemma looks slightly different:

⊢sub : ∀ {m n} {Γ1 : Context m} {Γ2 : Context n} {e t σ}
→ σ : Γ1 ⇒s Γ2

→ Γ1 ⊢ e : t

→ Γ2 ⊢ sub σ e : sub σ t

In contrast to the simply typed lambda calculus, applying a substitution
to a term, requires us to also apply the substitution to the type. This is
because if e is an application of a dependent function to a variable, then
e will also have the variable in its type. Consequently, if we replace the
variable in e, we also need to replace the variable in the type of e.

• In Progress.agda, we prove the progress lemma, which is largely indepen-
dent from the rest of the code base. The only external lemmas required is
that _≈_ is an equivalence relation.

• In Inversion.agda, we prove so-called inversion lemmas for the typing
relation. This is necessary, because the typing rule TConv makes our
typing relation not syntax-directed. For example, in the simply typed
lambda calculus, if we have a proof that Γ ⊢ ‘λ e : t, then we can match
on the proof, and find out, that this proof was constructed with the typing
rule for lambda terms. In our dependently typed lambda calculus, the
proof could have also been constructed with the TConv rule from some
Γ ⊢ ‘λ e : t’ with t ≈ t’. But then how was the proof for Γ ⊢ ‘λ e : t’
constructed? Ultimately, the typing rule for lambda terms has to be used,
but it could be under arbitrary many uses of the TConv rule. This fact
is captured by the inversion lemma for lambda terms:

11

invert-⊢λ : ∀ {n} {Γ : Context n} {e : Term (suc n)}
{t1 : Term n} {t2 : Term (suc n)}

→ Γ ⊢ ‘λ e : ∀[x: t1] t2
→ ∃[t1’] ∃[t2’]

t1 ≈ t1’ ×
t2 ≈ t2’ ×
Γ ⊢ t1’ : ‘Set ×
Γ , t1’ ⊢ e : t2’

Whereas the TLam and TConv rules allow us to build a typing for a
lambda term from certain assumptions, the invert-⊢λ lemma takes a typing
of a lambda term, and tells us from which assumptions it was built.

• In SubjectReduction.agda, we finally prove the subject-reduction lemma.

In some proofs, you need to make use of the subst-lemma from the PLFA
chapter Equality :

subst : ∀ {A : Set} {x y : A} (P : A → Set) → x ≡ y → P x → P y
subst P refl px = px

The subst lemma allows you to apply equalities to types. For example, if you
have a proof p of type Γ ⊢ e : t, but you need to produce a proof of type
Γ ⊢ e : t’. If you also have a proof q of type t ≡ t’, then you can use subst to
adjust the type of p:

p’ : Γ ⊢ e : t’
p’ = subst (λ T → Γ ⊢ e : T) q p

Your Tasks

• Prove the interaction lemmas for renamings and substitutions.
File: Exam/Part3/Composition.agda; Points: 10; Difficulty: ⋆⋆

• Prove that the language satisfies the confluence property.
File: Exam/Part3/Confluence.agda; Points: 10; Difficulty: ⋆⋆

• Prove the properties about the conversion relation.
File: Exam/Part3/ConversionProperties.agda; Points: 5; Difficulty: ⋆⋆

• Prove that substitution preserves typing.
File: Exam/Part3/SubstitutionPreservesTyping.agda; Points: 5; Dif-
ficulty: ⋆⋆

• Prove the inversion lemmas.
File: Exam/Part3/Inversion.agda; Points: 5; Difficulty: ⋆⋆

• Prove that the language satisfies the subject-reduction property.
File: Exam/Part3/SubjectReduction.agda; Points: 5; Difficulty: ⋆⋆

• Prove that the language satisfies the progress property.
File: Exam/Part3/Progress.agda; Points: 5; Difficulty: ⋆⋆

12

Part 4: Extension with Dependent Pairs and Equality
In this part, we want to extend our dependently typed lambda calculus from
Part 3 with dependent pair types and equality types.

Syntax

The syntax of our language is defined by the following grammar:

t ::= ... | (t, t) | proj1 t | proj2 t | ∃[x : t] t | refl | subst t t t | t ≡ t

A term t can be either a term as described in Part 3, a pair constructor
(t1, t2), a projection proji t, a dependent pair type ∃[x : t1] t2, the refl con-
structor for equality, an application of the subst function to eliminate equalities,
or an equality type t1 ≡ t2.

Dependent pairs behave exactly as we know them from Agda (PLFA book,
quantifiers chapter):

data Σ (A : Set) (B : A → Set) : Set where
〈_,_〉 : (x : A) → B x → Σ A B

proj1 : ∀ {A : Set} {B : A → Set} → Σ A B → A
proj1 〈 a , b 〉 = a

proj2 : ∀ {A : Set} {B : A → Set} → (p : Σ A B) → B (proj1 p)
proj2 〈 a , b 〉 = b

syntax Σ A (λ x → Bx) = Σ[x ∈ A] Bx

In our language, the term ∃[x : t1] t2 corresponds to the Agda type Σ[x ∈ t1] t2,
which is just syntactic sugar for Σ t1 (λx → t2) due to the syntax definition.

Similarly, equality proofs behave exactly as we know them from Agda (PLFA
book, equality chapter):

data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x

subst : ∀ {A : Set} {x y : A} (P : A → Set) → x ≡ y → P x → P y
subst P refl px = px

As we do not have pattern matching in our language, we use the subst
function instead to eliminate equality proofs. The subst function cannot prove
everything that we can prove with pattern matching in Agda, but it is a good
starting point. For example, we can use it to prove that equality is symmetric
and transitive:

sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x
sym {A} {x} {y} x≡y = subst (λ z → z ≡ x) x≡y refl

trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans {A} {x} {y} {z} x≡y y≡z = subst (λ z → x ≡ z) y≡z x≡y

13

Typing

We extend the typing relation from Part 3 by adding rules for our new terms.
The new rules correspond very closely to the types of the Agda definitions pre-
sented in the previous subsubsection, which you can use to guide your intuition.

TEx
Γ ⊢ t1 : Set Γ, x : t1 ⊢ t2 : Set

Γ ⊢ ∃[x : t1] t2 : Set

TPair
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2[x 7→ e1]

Γ ⊢ (e1, e2) : ∃[x : t1] t2

TProj1
Γ ⊢ e : ∃[x : t1] t2

Γ ⊢ proj1 e : t1

TProj2
Γ ⊢ e : ∃[x : t1] t2

Γ ⊢ proj2 e : t2[x 7→ proj1 e]

TEq
Γ ⊢ e1 : t Γ ⊢ e2 : t

Γ ⊢ e1 ≡ e2 : Set

TRefl
Γ ⊢ e : t

Γ ⊢ refl : e ≡ e

TSubst
Γ ⊢ u1 : t′ Γ ⊢ u2 : t′ Γ, x : t′ ⊢ t : Set

Γ ⊢ e1 : u1 ≡ u2 Γ ⊢ e2 : t[x 7→ u1]

Γ ⊢ subst t e1 e2 : t[x 7→ u2]

Your Tasks

• Copy every .agda-file from Part 3 to Part 4, except for Specification.agda
and Progress.agda. In the copied files change the imports accordingly,
e.g. open import Exam.Part3.Inversion should be renamed to open
import Exam.Part4.Inversion. Now, Agda will complain that many
lemmas have missing pattern matching cases. Your task is to add and
prove the missing cases, such that we end up with a working proof of
subject-reduction for the extended language. In some places, you may
also need to introduce a few new lemmas.

You do not need to prove the progress lemma.

Important: Once you started Part 4, we will not consider the
Part 3 directory during grading, but instead check if the cases
from Part 3 are covered in Part 4. This is easier for both you and us,
because if you still have holes in Part 3, you can also fill them after you
started Part 4, without needing to synchronize both parts, and we only
have to grade one of the two directories.

Points: 15; Difficulty: ⋆⋆

14

