
Prof. Dr. P. Thiemann, Dipl.-Math. A. Bieniusa Summer term 2010

Lecture: Program analysis
Exercise 5

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2010ss/

1 Monotone Frameworks

1. Show that Constant Propagation (as defined in Sec. 2.3.3 of Nielson&Nielson and on the
slides) is a Monotone Framework.

2. Show that the Reaching Definitions Analysis is a Bit Vector Framework.

Solution

1. We have to show that

• L = ((Var∗ → Σ>)⊥,v) is a complete lattice which satisfies the Ascending Chain
Condition, and

• FCP = {f | f is a monotone function on ŜtateCP} contains the identity function
and is closed under function composition.

As defined in chap. 2.3.3., L is by construction a complete lattice. It also satisfies ACC
because Var∗ is finite for a given program. Further, the identity function is monotone,
and compositions of monotone functions are again monotone.

2. We have to show that

• L = (P(D),v) for a finite set D, and v is either ⊆ or ⊇, and

• F = {f : P(D) → P(D) | ∃Y 1
f , Y 2

f : ∀Y ⊆ D : f(Y ) = (Y ∩ Y 1
F ) ∪ Y 2

F }.

For the RD Analysis, we have L = (P(Var∗ × Lab?
∗),⊆), and Var∗ × Lab?

∗ is finite.
Further, set Y 1

f = D \ lk and Y 2
f = lg. Then,

f(l) = (l ∩ (D \ lk)) ∪ lg

= ((l \ lk) ∩D) ∪ lg

= (l \ lk) ∪ lg

2 Detection of Signs Analysis

In a Detection of Signs Analysis, one models all negative numbers by the symbol −, zero by 0,
and all positive numbers by +. E.g., the set {−2,−1, 1} is modeled by {+,−}.

Let S∗ be a program, Var∗ the finite set of variables in S∗. Take L = Var∗ → P({−,+, 0})
and define an instance of a Monotone Framework for performing Detection of Signs Analysis.

Similarly, take L′ = Var∗ ×P({−,+, 0}) and define an instance of a Monotone Framework
for performing Detection of Signs Analysis. Is there any difference in the precision between the
two approaches?

Solution

The monotone framework is given by the lattice L = Var∗ → P({−,+, 0}) and the following
instantiations:

• l1 v l2 iff ∀x ∈ Var∗ : l1(x) ⊆ l2(x)

• ⊥ ∈ Var∗ → P({−,+, 0}), ⊥(x) = ∅ ∀x ∈ Var∗

• > ∈ Var∗ → P({−,+, 0}), >(x) = {−,+, 0} ∀x ∈ Var∗

• l1 t l2 ∈ Var∗ → P({−,+, 0}), (l1 t l2)(x) = l1(x) ∪ l2(x)



• F = {f : L → L | f monotone}

• F = flow(S?)

• E = {init(S?)}

• ι = ⊥

• Let AV A : AExp → ŜtateVA → P({−, 0,+}) be the function that calculates the sign of
an expression using the information in σ̂. Then, fAV

· is defined by:

[x := a]l : fAV
l (σ̂) = σ̂[x → AV AJaKσ̂ ]

[skip]l : fAV
l (σ̂) = σ̂

[b]l : fAV
l (σ̂) = σ̂

There is no difference in precision for these approaches.


