Prof. Dr. P. Thiemann, Dipl.-Math. A. Bieniusa Summer term 2010

Lecture: Program analysis
Exercise 7
http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2010ss/

1 Control Flow Analysis for an object-oriented language

Program ::= Class* Exp

Class = class Id Var* Method* end

Var m= var Id

Method = method Id (Id*) Exp end

Exp = Term!

Term x= Int|Id | Exp Op Exp | false | true | Id := Exp |

if Exp then Exp else Exp end | Exp;Exp |
this | null | new Id | Exp.Id(Exp*)

Op n= | = [&< | =
Id = (identifier)
Int == (integer)

Consider the object-oriented mini-language defined above. It implements standard seman-
tics, assuming the following rules:

e All variables are initialized with null.
e Assignments evaluate to the expression on the right-hand side.

e You may assume that all instance variables and formal arguments have distinct names.
Further, this is never used outside classes; when used within a class C, it is renamed to
this-C.

Define a 0-CFA for this language which determines for each expression to elements of which
type(s) it might evaluate. Possible types are Bool, Int, and C € CName,, where CName,
is the set of all classes defined in a program.

1. What are C(I) and r(z) in this setting?
2. Define for each kind of expression the set of constraints C, it generates.

3. Consider the following type-incorrect program:

class C
method n(i)
i+1
end
end

(new C) .n(true)

Add labels and give the constraints that are generated for this program together with a
minimal solution.

4. How can the results of the 0-CFA be used to reject programs which are not type-correct?

Solution
1. We define 7 = {Int, Bool} U CName, and r : Var, — P(7,) C : Lab, — P(7).

2. The constraints could be defined as follows:

[C.[i'] = {{Int} c C()}
[true] C.[true!] = {{Bool} C C(I)}
[false] C.[false'] = {{Bool} C C(I)}
[op+] Cufler +e2]'] = Cilea] UC[e2] U {{Int} C C(I)}
lass] Cullw :=)] = C[t]U{Clo) C r(z)} U{C(lo) € C()}
[if] C.[[ifty thent elset? end]'] = C.[ty]UC[t]UC[t5]

U{C(l) € C()yu{C(l2) € C()}
[seq) Ca[lt75t5]'] = GirIuc[iz]u{C() c CO)}
[this] C.[this — C'] = {{cycou)}
[new] C.[[new C] = {{crcce}
var] C['] = {r@) C W)}
[null] C,[null'] = 0
[eall] C.[[(t5)-m(t .., th)])'] = Uil [t

u{{C} CC(y)=Cl;) Cr(z;)Vi=1...n]|
C defines method m (z1,...,2,) t end}
UH{C} € Clly) = Clim) € C0)|
C' defines method m (1, ..., 2,) t" end}

Similarly for all other binary operators.

3. The labeled program could look like this:

class C
method n(i)
(it +12)3
end
end

((new C)%.n(true®))®

The constraints for this program are

r(i) < C(1)
It} < C©
{Int} C C(3)
{c} < CM)
{Bool} C C(5)
CeCld) = CB)Cr@)
CeC4d) = C(3)cC(6)
A minimal solution is given by:
C(1) = {Bool}
C(2) {Int}
C3) = {Int}
cH4) = {C}
C(5) = {Bool}
C(6) {Int}
r(i) = {Bool}

4. If we annotate the program with the inferred type information, we could run a type
checker. The type checker would then detect the type error in the sum.

2 Correctness of 0-CFA

1. The following statement was crucial in the correctness proof for 0-CFA (cf. Slide 47 or
Fact 3.11 on p. 160):

(€0 Fith A C)CC)) = (C.p) kit (1)

Prove the statement formally.

. Reconsider the decision to use Val = P(Term) in the correctness proof. Alternatively,
we could have chosen Val = P(Exp). Show that the specification of the CFA may be
modified accordingly, but that then the statement 1 above (and hence the correctness
result) would fail.

Solution

1. Proof by each case.

[con] (C.p) " always = (C,p) =

war] (C,p) Ea" A C(lh) € C(lz) & p(x) € C(la) € C(lo)
= (C,p) "

[fn] (C,p) E (fnz = en)" A C(ly) CC(ly) < (fnz = eo) C C(ly) C C(ly)
= (C, p) E (fnz =)

All other cases proceed similarly.

2. Define § € Val = P(Exp).

[con] (C,p) = always

[var] (C,p) k=2 iff plar) € C(1)

[fn] (é,ﬁ) E(fnz = eo) iff {(fnxz =ep)'} CC(I)

[fun] (C,p) E (fun f = €)' iff {(fun fx = €)'} € C(1)
lapp] (C.p) k= (17)" iff (C,p) =t} A (Cp) =t

V(fnz = 1) € C(h) : (C,p) = t§ A Clla) € pla) A Cllo) € C(1))
V(fun fz =) € C() (C.p) [t A Cy) Cpx) A Clo) € C(l)
A (fun fz = to)))

>

>
—~

All other rules remain unchanged.

For an example where statement 1 fails consider it = (fnz = eg), and ie; = it ieq = it'2.
Assume, that (C,7) k= ey, ie. {(faz = eo)1} € C(l1). Now, choose C(ly) = C(ly) =
{(fnz = €g)""}. Then, the condition of the statement holds but (C,7) = ies does not
hold because {ies} ¢ C(l5).

