Abstraction II

Property Abstraction (based on Patrick Cousout's 2005 course "Abstract Interpretation")

Albert-Ludwigs-Universität Freiburg

Manuel Geffken

2014-06-24

When analyzing/proving programs we have to consider "objects" that represent some part of the computation state, such as:

- \blacksquare Values: booleans, integers, ... $\mathcal V$
- Variable names: X
- Environments: $\mathbb{X} \to \mathcal{V}$
- Stacks: assigning values to variables in the context of block-structured languages: U_{n<0}([1, n] → (X → V))

begin new X,Y;	
X := 10; Y := 0;	1: × 10 y 0
begin new X;	2: × 20
X := 20;	$\{1 \mapsto \{x \mapsto 10, y \mapsto 0\},\$
end ;	$2 \mapsto \{x \mapsto 20\}\}$

end;

- Heaps: dynamic allocation;
- Control points: procedure names, labels, ...;
- States: control & memory states.

Finite prefix traces;

- Maximal finite or infinite traces for deterministic programs);
- Sets of maximal finite or infinite traces (for nondeterministic programs);

...

Properties are "sets of objects" (which have that property). Examples:

- odd naturals: $\{1, 3, 5, \dots, 2n + 1, \dots\}$
- even integers: $\{2z \mid z \in \mathbb{Z}\}$
- values of integer variables: $\{z \in \mathbb{Z} \mid \text{minint} \le z \le \text{maxint}\}$
- values of maybe uninitialized integer variables: $\{z \in \mathbb{Z} \mid \text{minint} \leq z \leq \text{maxint}\} \cup \{\Omega_m \mid m \in \mathcal{M}\}$ where \mathcal{M} is a set of error messages

- equality of two variables x and y: $\{\rho \in \mathbb{X} \rightarrow \mathcal{V} \mid x, y \in dom(\rho) \land \rho(x) = \rho(y)\}$
- invariance property: (of a program with states in Σ): $I \in \mathcal{P}(\Sigma)$
- trace property: $T \in \mathcal{P}(\Sigma^{\overrightarrow{\infty}})$
- trace semantics property: $P \in \mathcal{P}(\mathcal{P}(\Sigma^{\overrightarrow{\infty}}))$

. . .

The set of properties $\mathcal{P}(\Sigma)$ of objects in Σ is a complete boolean lattice:

 $\langle \mathcal{P}(\Sigma), \subseteq, \emptyset, \Sigma, \cup, \cap, \neg \rangle$

where

- A property P ∈ P(Σ) is the set of objects which have the property P.
- \subseteq is logical implication since $P \subseteq Q$ means that all objects with property P have property Q ($o \in P \implies o \in Q$)

- Ø is false
- Σ is true
- U is disjunction (objects which have property P or have property Q belong to P ∪ Q)
- \cap is conjunction (objects which have property *P* and have property *Q* belong to $P \cap Q$)
- $\blacksquare \neg$ is negation (objects not having property P are those in $\Sigma \setminus P$)

UNI FREIBURG

- Abstraction replace someting "concrete" ¹ by a schematic description that account for some, and in general not all properties, either known or inferred i.e. an "abstract" model or concept
- In practice, such an abstract model of a concrete object o
 - can describe some of the properties of the concrete object
 - cannot describe all properties of this concrete object ²

¹real, actual, material, corporeal, ...

² since otherwise this property would have to be "exactly that object" i.e. $\{o\}$

- So an abstraction of properties in P(Σ) of objects in Σ is essentially a subset A ⊆ P(Σ) such that:
 - The properties in *A* are the concrete properties that can be described exactly by the abstraction, without any loss of information
 - The properties in P(Σ) \ A are the properties that cannot be described exactly by the abstraction, and have to be referred to by being approximated in some way or another by abstract properties in A

$\mathsf{Cars} \stackrel{\alpha}{\to} \mathsf{Color} \ ^{\mathbf{3}}$

- A concrete property of cars is a set of cars
- It can be abstracted by the set of their colors
- A color is a set of cars
- An abstract property of cars is a set of cars which, whenever it contains one car of some color, also contains all cars of that color

³Formally, if $t \in \text{Cars} \to \text{Color yields the color } t(c)$ of a car $c \in \text{Cars then}$ the abstraction $P \in \mathcal{P}(\text{Cars})$ is $\alpha(P) = \{t(c) \mid c \in P\}$ and the set of cars described by an abstract property $T \subseteq \text{Colors is}$ $\gamma(T) = \{c \in \text{Cars} \mid t(c) \in T\}.$

Manuel Geffken

EIBURG

Scientific papers ightarrow set of keywords ⁴

- A concrete property of scientific papers is a set of scientific papers
- Each scientific paper is abstracted by a list of keywords
- A property of scientific papers can be abstracted by the list of keywords appearing in all papers with that property
- An abstract property of scientific papers is therefore a set of papers which have all keywords belonging to the list

⁴Can be written formally as well.

Abstraction is a reasoning/computation such that:

- Only some properties A ⊆ P(Σ) of the objects in Σ can be used;
- The properties $P \in A$ that can be used are called abstract;
- The properties $P \in \mathcal{P}(\Sigma)$ are called concrete;

- Abstract reasonings/computations involve sound approximations, in that:
 - The concrete properties that are also abstract can be used in the abstract reasoning/computation "as is", without any loss of information;
 - The concrete properties P ∈ P(Σ) \ A which are not abstract cannot be used in the reasoning/computation and therefore must be approximated by some other abstract property P̄ ∈ A, which, since P ≠ P̄, involves some form of approximation.

UNI FREIBURG

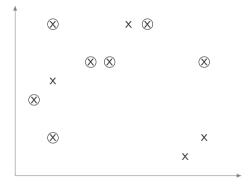
• When approximating a concrete property $P \in \mathcal{P}(\Sigma)$, by an abstract property $\overline{P} \in A$, with $\overline{P} \neq P$, a relation must be established between the concrete P and abstract property P to establish that

" $\overline{P} \in A$ is an approximation/abstraction of $P \in \mathcal{P}(\Sigma)$ "

so as to ensure the soundness of the reasoning in the abstract with respect to the concrete, exact one.

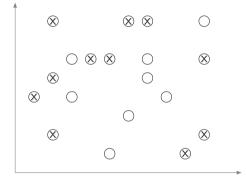
- We consider essentially two cases:
 - Approximation from above: $P \subseteq \overline{P}$
 - Approximation from below: $P \supseteq \overline{P}$
- Other relations can be considered (e.g. probabilistic properties)
- The two notions are dual so formally only one need to be studied formally (approximation from above)
- In practice, useful approximation from below are much harder to discover

Abstraction from below



- x: points which have the concrete property P
- o: points which have the abstract property P
 - To answer the question " $\langle x, y \rangle \in P$?" using only \overline{P} (such that $P \supseteq \overline{P}$):
 - If $\langle x, y \rangle \notin \overline{P}$ then "I don't know"
 - If $\langle x, y \rangle \in \overline{P}$ then "Yes"

Abstraction from above



- x: points which have the concrete property P
- o: points which have the abstract property P
 - To answer the question " $\langle x, y \rangle \in P$?" using only \overline{P} (such that $P \subseteq \overline{P}$):
 - If $\langle x, y \rangle \in \overline{P}$ then "I don't know"
 - If $\langle x, y \rangle \notin \overline{P}$ then "Yes"

Manuel Geffken

Abstraction II

Why can an abstraction from above be "simpler" than the original concrete property?

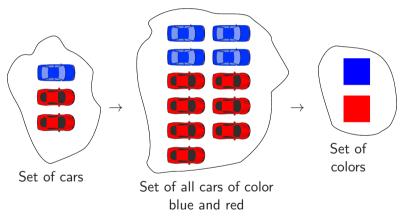
The concrete property is a set of objects

- The objects are complex
- The set can be infinite
- In general their exists no suitable computer repre- sentation of the concrete property
- The abstract property is a larger set of objects
 - Larger structures are in general even more expensive to store in the computer memory/compute with than smaller ones

EIBURG

 <u>but</u>, well-chosen larger structures can have simpler encodings which can be exploited for memorization and computation

Example:



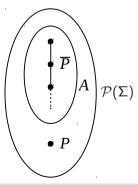
UNI FREIBURG

- Assume a mechanized reasoning about a computer sys- tems with objects/states Σ, we use an abstraction A ∈ P(Σ)
- Assume concrete properties P ∈ P(Σ) which cannot be expressed in the abstract, must be approximated from above by P̄ ∈ A : P ⊇ P̄
- How should the mechanized reasoning proceed when some property P has has <u>no</u> abstraction P ∈ A from above (∀P ∈ A : P ⊉ P)?
 - loop?

- block?
- ash for help?
- fail?
- answer something sensible!
- The only way to be always able to say something sensible for all P ∈ P(Σ) is to assume that Σ ∈ A:

Any concrete property should be approximable by "I don't know" (i.e. $\Sigma \in A, \Sigma$ meaning "true")

- UN FREIBURG
- Assume concrete properties P ∈ P(Σ) must be approximated from above by P̄ ∈ A ⊂ P(Σ) such that P ⊆ P̄
- The smaller the abstract property *P* is, the most precise the approximation will be
- There might be no minimal abstract property at all in A



If a concrete property P ∈ P(Σ) has minimal upper approximations P ∈ A:

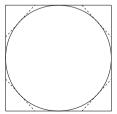
$$P \subseteq \overline{P}$$

$$\exists P' : P \subseteq P' \sqsubset \overline{P}$$

then such minimal approximations are more precise than the non-minimal ones

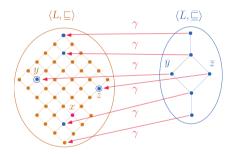
- So minimal abstract upper approximations, if any, should be prefered
- In particular, an abstract property *P* ∈ *A* is best approximated by itself

- A classical example of absence of minimal abstract upper-approximations is that of a disk with no minimal convex polyhedral approximation
- $\bullet \ \Sigma = \mathbb{R} \times \mathbb{R}$
- *A* = convex polyhedra
- Absence of minimal approximation is shown by Euclide's construction:



- In absence of minimal approximations, the approximation $P \subset P_1$ can always be approximated by a better one $P \subset P_2 \subset P_1!$
- Some arbitrary choice has to be performed. This case will be studied later. So, in the following, we assume the existence of minimal approximations

Example of minimal abstractions in absence of a best approximation



• x can be approximated by $y = \gamma(\overline{y})$ and $z = \gamma(\overline{z})$ but x and z are not comparable

- The other possible upper approximations would be less precise (than both y and z in that particular example)
- Notice that γ cannot be the upper adjoint of a Galois connection since it is not a complete meet morphism:

 $\gamma(\overline{y}) \land \gamma(\overline{z}) \neq \gamma(\overline{y} \sqcap \overline{z})$

UNI FREIBURG

- If there are several minimal possible abstract approximations $\overline{P}_1, \overline{P}_2, \dots$ ⁵
- Example: rule of signs
 - In "1+0", it is better to chose '+', because of the rule '+' + '+' = '+', while '+' + '-' yields no information ("I don't know")
 - In "(-1)+0", it is better to chose '-', because of the rule '-' + '-' = '-', while '-' + '+' yields no information ("I don't know")
 - Both cases have to be tried (backtracking)

Abstraction II

⁵There can even be infinitely many ones

- In absence of unicity of the minimal approximation, it may be necessary to try all of them (at the cost of an exponential blow up of the mechanical reasoning).
- To start with, we will assume the existence of a best approximation (i.e. a unique minimal upper approximation).

A very handy choice of the abstract properties A ⊆ P(Σ) is when every concrete property P has a best approximation P̄ ∈ A:

$$P \subseteq \overline{P}$$

$$\forall \overline{P}' \in A : (P \subseteq \overline{P}') \implies (\overline{P} \subseteq \overline{P}')$$

It follows that P is the glb of the over-approximations of P in A:

$$\overline{P} = \bigcap \{ \overline{P}' \in A \mid P \subseteq \overline{P}' \} \in A$$

Proof.

- We have $\forall \overline{P} \in \{\overline{P}' \in A \mid P \subseteq \overline{P}'\} : P \subseteq \overline{P}$ so $P \subseteq \bigcap \{\overline{P}' \in A \mid P \subseteq \overline{P}'\}$ by definition of glb
- Moreover $\forall \overline{P}' \in A : (P \subseteq \overline{P}') \implies (\bigcap \{\overline{P}'' \in A \mid P \subseteq \overline{P}''\} \subseteq \overline{P}')$ because from the premise we get $\overline{P}' \in \{\overline{P}'' \in A \mid P \subseteq \overline{P}''\}$ and by definition of glb it holds $\bigcap \{\overline{P}'' \in A \mid P \subseteq \overline{P}''\} \subseteq \overline{P}'.$ There can only be one such smallest abstraction of P.

• It follows that
$$\overline{P} = \bigcap \{ \overline{P}' \in A \mid P \subseteq \overline{P}' \}$$

• So
$$\left(\exists \overline{P} : (P \subseteq \overline{P}) \land (\forall \overline{P}' \in A : (P \subseteq \overline{P}') \Longrightarrow (\overline{P} \subseteq \overline{P}')\right)$$

 $\Leftrightarrow \overline{P} = \bigcap \{\overline{P}' \in A \mid P \subseteq \overline{P}'\} \in A$

The abstract domain is a Moore family

Theorem

The hypothesis that any concrete property $P \in \mathcal{P}(\Sigma)$ has a best abstraction $P \in A$, implies that The abstract domain A is a Moore family.

Proof.

Let $X \subseteq A$ be a set of abstract properties. Its intersection $\bigcap X$ has a best approximation $\overline{P} \in A$. We have therefore

$$\overline{P} = \bigcap \{ \overline{P}' \in A \mid \bigcap X \subseteq \overline{P}' \}$$

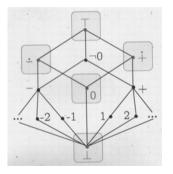
But $\forall \overline{P}' \in X : \bigcap X \subseteq \overline{P}'$ and $X \subseteq A$ so $X \subseteq \{\overline{P}' \in A \mid \bigcap X \subseteq \overline{P}'\}$ and therefore $\bigcap \{\overline{P}' \in A \mid \bigcap X \subseteq \overline{P}'\} \subseteq \bigcap X$ by def. of glb. By antisymmetry $(\overline{P} \subseteq \bigcap X \text{ as } \overline{P} \text{ is an approximation}),$ $\bigcap X = \bigcap \{\overline{P}' \in A \mid \bigcap X \subseteq \overline{P}'\} = \overline{P} \in A$, proving A to be a Moore family.

Manuel Geffken

In particular $\bigcap \emptyset = \Sigma \in A$, which is consistent with our hypothesis that A should contain Σ to have the ability to express "I don't know".

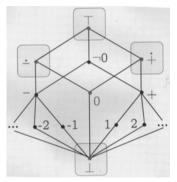
Example and counter-example of Moore family based abstraction

Example: rule of signs with best approximation of 0

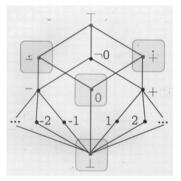


REIBURG

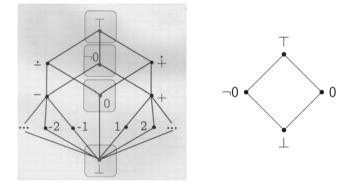
Counter-example: rule of signs without best approximation of 0



Counter-example: rule of sign without upper approximation of "different from zero"



Example: abstraction to 0 or different from 0



A Moore family in a poset is a complete lattice

Theorem

Let $\langle P, \sqsubseteq \rangle$ be a topped poset and $M \subseteq P$ be a Moore family then $\langle M, \sqsubseteq \rangle$ is a complete lattice $\langle M, \sqsubseteq, \sqcap M, \top \rangle$.

Proof.

Since $\langle P, \sqsubseteq \rangle$ is a poset and $M \subseteq P$, $\langle M, \sqsubseteq \rangle$ is a poset. Being a Moore family it is topped and any subset $S \subseteq M$ has $\sqcap S \in M$ so \sqcap is the meet in M. It follows that M is a complete lattice, which lub is:

$$\sqcup S = \sqcap \{y \in M \mid \forall x \in S : x \sqsubseteq y\} \in M$$

The infimum is $\Box M \in M$.

Assume that the abstract domain A is a Moore family of the concrete domain $\langle \mathcal{P}(\Sigma), \subseteq, \emptyset, \Sigma, \cup, \cap, \neg \rangle$. The the abstraction map is

$$\rho \in \mathcal{P}(\Sigma) \to A$$
$$\rho(P) \stackrel{\text{def}}{=} \bigcap \{ \overline{P} \in A \mid P \subseteq \overline{P} \}$$

Then ρ is an upper closure operator on $\mathcal{P}(\Sigma)$. That is ρ is

• Extensive: $P \subseteq \rho(P)$

Increasing:
$$P \subseteq P' \Rightarrow \rho(P) \subseteq \rho(P')$$

• Idempotent: $\rho(\rho(P)) = \rho(P)$

Proof.

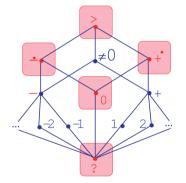
 ρ is the closure operator induced by the Moore family, a result simply depending on the fact that $\langle \mathcal{P}(\Sigma), \subseteq, \emptyset, \Sigma, \cup, \cap \rangle$ is a complete lattice.

Manuel Geffken

Abstraction II

2014-06-24 40 / 44

Example of abstraction map



Abstraction map (closure operator)

Moore family

Manuel Geffken

Abstraction II

2014-06-24 41 / 44

In case of existence of a best abstraction, it is equivalent to specify the abstraction domain A

- 1 as a Moore family ${\mathcal M}$
- **2** as a closure operator ρ

Proof.

- Given \mathcal{M} define $\rho(P) = \cap \{\overline{P} \in \mathcal{M} \mid P \subseteq \overline{P}\} \in \mathcal{M}$ so that $A = \mathcal{M} = \rho(\mathcal{P}(\Sigma))$
- Conversely, given a closure operator ρ , define $A = \rho(\mathcal{P}(\Sigma)) = \{\rho(P) \mid P \in \mathcal{P}(\Sigma)\}$ which is therefore the set of fixpoints of ρ (because ρ is idempotent) whence a Moore family since ρ operates on a complete lattice.

EIBURG

Examples of specifications of an abstraction by a Moore family and a closure operator

- The most imprecise abstraction is "I don't know"
 - $\mathcal{M} = \{\Sigma\}$
 - $\bullet \ \rho = \lambda P.\Sigma$
- The most precise abstraction is "identity"

•
$$\mathcal{M} = \mathcal{P}(\Sigma)$$

$$\rho = \lambda P.P$$

- The reasoning on abstractions of concrete properties ⟨P(Σ), ⊆, Ø, Σ, ∪, ∩, ¬⟩ to an abstract domain which, in case of best abstraction is a Moore family, whence a complete lattice, can be generalized to an arbitrary concrete complete lattice ⟨L, ⊑, ⊥, ⊤, ⊔, ⊓⟩
- This allows a compositional approach where ⟨L, ⊑, ⊥, ⊤, ⊔, ⊓⟩ is abstracted to ⟨A₁, ⊑₁, ⊥₁, ⊤₁, ⊔₁, ⊓₁⟩ which itself can be further abstracted to ⟨A₂, ⊑₂, ⊥₂, ⊤₂, ⊔₂, ⊓₂⟩, ...