Static Program Analysis

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Exercise Sheet 3

15.05.2014

Exercise 1 (Posets)

1. Show that for the two partially ordered sets (posets) $(\mathcal{P}(M), \subseteq)$ and $(\mathcal{P}(N), \subseteq)$ the product of the two posets is a poset

$$(\mathcal{P}(M) \times \mathcal{P}(N), \sqsubseteq).$$

The partial order \sqsubseteq is defined as

$$(m_1, n_1) \sqsubseteq (m_2, n_2) \Leftrightarrow m_1 \subseteq m_2 \land n_1 \subseteq n_2.$$

You can assume that M and N are disjoint.

2. a) Let $(P_1, \sqsubseteq_1), \ldots, (P_n, \sqsubseteq_n)$ be posets. Show that the cartesian product $P_1 \times \cdots \times P_n$ and the relation \sqsubseteq^n , where \sqsubseteq^n is defined as

$$(x_1, \dots, x_n) \sqsubset^n (y_1, \dots, y_n) \stackrel{\text{def}}{=} \exists i \in [1, n] : \forall j < i : x_j = y_j \land x_i \sqsubset_i y_i$$
$$(x_1, \dots, x_n) \sqsubseteq^n (y_1, \dots, y_n) \stackrel{\text{def}}{=} (x_1, \dots, x_n) \sqsubset^n (y_1, \dots, y_n) \lor \bigwedge_{i=1}^n x_i = y_i,$$

is a poset.

- b) Show that $(P_1 \times \cdots \times P_n, \sqsubseteq^n)$ is totally ordered if $(P_1, \sqsubseteq_1), \ldots, (P_n, \sqsubseteq_n)$ are totally ordered.
- c) What is the (unique) top/bottom element \top/\bot of $(P_1 \times \cdots \times P_n, \sqsubseteq^n)$?
- d) What requirement(s) on $(P_1, \sqsubseteq_1), \ldots, (P_n, \sqsubseteq_n)$ need to be satisfied for \top/\bot to exist in $(P_1 \times \cdots \times P_n, \sqsubseteq^n)$?

Submission In PDF format via email to geffken AT informatik.uni-freiburg.de. Please name your single file with the scheme: ex03-name.pdf, respectively.

- Deadline: 22.05.2014, 12:00
- Late submissions will not be marked.
- Do not forget to write your name on the exercise sheet.