Static Program Analysis

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Exercise Sheet 4

22.05.2014

Exercise 1 (Complete lattices)

- 1. Let $M = \{a, b, c\}$. Define a relation R such that (M, R) is a complete lattice.
- 2. For a totally ordered set S, $(\mathcal{P}(S), \subseteq)$ is a complete lattice. Define another relation R such that $(\mathcal{P}(S), R)$ is a complete lattice.
- 3. Is (\mathbb{R}, \leq) a complete lattice? If not, how can you extend \mathbb{R} such that it becomes a complete lattice?
- 4. In Exercise 1 on Exercise Sheet 1 you have used the powerset lattice $L_{\mathcal{P}} = (\mathcal{P}(\mathbf{Var}_{\star} \times \{-, 0, +\}), \subseteq)$ in the Detection of Signs Analysis. Alternatively, you could have used the lattice $L = (\mathbf{Var}_{\star} \to \mathcal{P}(\{-, +, 0\}), \subseteq)$.
 - Provide the definition of the appropriate relation \sqsubseteq .
 - What are the values of \top and \perp in L?
 - What is $l_1 \sqcup l_2$?
 - Is there any difference in the precision between the two approaches?

Definitions

1. A complete partial order (M, \leq) has a *flat* ordering iff

$$\forall x, y \in M : x \leq y \Rightarrow x = \bot \lor x = y$$

- 2. Let (M, \leq) and (N, \leq) be pointed complete partial orders, and $f: M \to N$. f is
 - a) monotone iff $x \leq y \Rightarrow f(x) \leq f(y)$;
 - b) strict iff $f(\perp) = \perp$.
- 3. Let (M, \leq) and (N, \leq) be complete lattices, and $f : M \to N$. f is (Scott) continuous iff f preserves least upper bounds of chains, i.e. for all chains it holds that

$$f\left(\bigsqcup_{i\in I} x^{(i)}\right) = \bigsqcup_{i\in I} f(x^{(i)})$$

Exercise 2

Given functions $f: M \to N$ and $g: N \to P$, which of the following statements are true? Give a proof or a counter example.

For pointed complete partial orders (M, \leq) and (N, \leq) :

- 1. If (N, \leq) has a flat ordering and f is monotone, then f is strict or constant.
- 2. If (M, \leq) has a flat ordering and f is strict, then f is monotone.

For complete lattices $(M, \leq), (N, \leq)$, and (P, \leq) :

- 3. If (M, \leq) satisfies the Ascending Chain Condition and f is monotone, then f is continuous.
- 4. If f is monotone, then f is strict.
- 5. If f and g are monotone (continuous, strict), then $g \circ f$ is monotone (continuous, strict).
- 6. If f is monotone and $\langle x^{(i)} \rangle_{i \in I}$ is a chain in M, then $\bigsqcup_{i \in I} f(x^{(i)}) \leq f(\bigsqcup_{i \in I} x^{(i)})$.
- 7. If f is continuous, then f is also monotone.

Submission In PDF format via email to geffken AT informatik.uni-freiburg.de. Please name your single file with the scheme: ex04-name.pdf.

- Deadline: 05.06.2014, 12:00
- Late submissions will not be marked.
- Do not forget to write your name on the exercise sheet.