Static Program Analysis

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Exercise Sheet 7

03.07.2014

Definitions

t ::=	terms:
x	variable
$\lambda x.t$	abstraction
$t \; t$	application

Figure 1: Syntactic	forms of	f the	lambda	calculus
---------------------	----------	-------	--------	----------

- 1. Let \mathcal{V} be a countable set of variable names. The set of terms is the smallest set \mathcal{T} such that
 - a) $x \in \mathcal{T}$ for every $x \in \mathcal{V}$
 - b) if $t_1 \in \mathcal{T}$ and $x \in \mathcal{V}$, then $\lambda . t_1 \in \mathcal{T}$;
 - c) if $t_1 \in \mathcal{T}$ and $t_2 \in \mathcal{T}$, then $t_1 t_2 \in \mathcal{T}$;
- 2. The *size* of a term is defined as

size(x) = 1 $size(\lambda.t_1) = size(t_1) + 1$ $size(t_1 t_2) = size(t_1) + size(t_2) + 1$

3. The set of *free variables* of a term t, written FV(t), is defined inductively as follows:

$$egin{aligned} &\mathrm{FV}(x) = x \ &\mathrm{FV}(\lambda x.\mathtt{t}_1) = \mathrm{FV}(\mathtt{t}_1) \setminus x \ &\mathrm{FV}(\mathtt{t}_1 \ \mathtt{t}_2) = \mathrm{FV}(\mathtt{t}_1) \cup \mathrm{FV}(\mathtt{t}_2) \end{aligned}$$

4. The set of *bound variables* of a term t, written BV(t), is defined inductively as follows:

$$BV(x) = \emptyset$$

BV($\lambda x.t_1$) = $x \cup BV(t_1)$
BV($t_1 t_2$) = BV(t_1) $\cup BV(t_2)$

Exercise 1 (Properties of FV)

1. Give a proof that $|FV(t)| \leq size(t)$ for every term t.

2. Provide an example for a term t such that $FV(t) \cap BV(t) \neq \emptyset$.

Exercise 2 (Equality on traces)

We are now looking at a universe $\mathcal{U} = \text{Trace} \times \text{Trace}$, where $\text{Trace} = \Sigma^*$ is just the set of all finite traces over the alphabet $\Sigma = (\text{Var} \times \text{Lab})$. Let EQ be the equality relation on Σ^* :

$$EQ = \{(v, v) \mid v \in \Sigma^*\}$$

Given the monotone function $F : \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$:

$$F(R) = \{(\epsilon, \epsilon)\} \cup \{(av, aw) \mid a \in \Sigma \text{ and } (v, w) \in R\}$$

- What is gfp F?
- Prove equality is the least fixpoint of F:

$$\operatorname{lfp} F \stackrel{?}{=} EQ$$

Hint: Consider the definitions of F-consistent (post-fixpoint), F-closed (pre-fixpoint), and the Knaster-Tarski-Theorem. In particular, you can use the principle of induction: if X is F-closed, then lfp $F \subseteq X$. You can also use Lemma 1.

Lemma 1

$$\forall j \in \mathbb{N} : F^{(j)}(\emptyset) \subseteq \operatorname{lfp} F.$$

Submission In PDF format via email to geffken AT informatik.uni-freiburg.de. Please name your single file with the scheme: ex07-name.pdf.

- Deadline: 10.07.2014, 12:00
- Late submissions will not be marked.
- Do not forget to write your name on the exercise sheet.