Static Program Analysis

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Solution Sheet 3

15.05.2014

Exercise 1 (Posets)

1. Show that for the two partially ordered sets (posets) $(\mathcal{P}(M), \subseteq)$ and $(\mathcal{P}(N), \subseteq)$ the product of the two posets is a poset

$$(\mathcal{P}(M) \times \mathcal{P}(N), \sqsubseteq).$$

The partial order \sqsubseteq is defined as

$$(m_1, n_1) \sqsubseteq (m_2, n_2) \Leftrightarrow m_1 \subseteq m_2 \land n_1 \subseteq n_2.$$

You can assume that M and N are disjoint.

2. a) Let $(P_1, \sqsubseteq_1), \ldots, (P_n, \sqsubseteq_n)$ be posets. Show that the cartesian product $P_1 \times \cdots \times P_n$ and the relation \sqsubseteq^n , where \sqsubseteq^n is defined as

$$(x_1, \dots, x_n) \sqsubset^n (y_1, \dots, y_n) \stackrel{def}{=} \exists i \in [1, n] : \forall j < i : x_j = y_j \land x_i \sqsubset_i y_i$$
$$(x_1, \dots, x_n) \sqsubseteq^n (y_1, \dots, y_n) \stackrel{def}{=} (x_1, \dots, x_n) \sqsubset^n (y_1, \dots, y_n) \lor \bigwedge_{i=1}^n x_i = y_i,$$

is a poset.

- b) Show that $(P_1 \times \cdots \times P_n, \sqsubseteq^n)$ is totally ordered if $(P_1, \sqsubseteq_1), \ldots, (P_n, \sqsubseteq_n)$ are totally ordered.
- c) What is the (unique) top/bottom element \top/\bot of $(P_1 \times \cdots \times P_n, \sqsubseteq^n)$?
- d) What requirement(s) on $(P_1, \sqsubseteq_1), \ldots, (P_n, \sqsubseteq_n)$ need to be satisfied for \top/\bot to exist in $(P_1 \times \cdots \times P_n, \sqsubseteq^n)$?

Solution

1. Reflexivity:

Proof.
$$(n,m) \sqsubseteq (n,m) = m \subseteq m \land n \subseteq n$$

Antisymmetry:

Proof.

$$(n_1, m_1) \sqsubseteq (n_2, m_2) \land (n_2, m_2) \sqsubseteq (n_1, m_1)$$

$$\implies m_1 \subseteq m_2 \land m_2 \subseteq m_1 \land n_1 \subseteq n_2 \land n_2 \subseteq n_1$$

$$\implies (n_1, m_1) = (n_2, m_2)$$

Transitivity:

Proof.

$$(n_1, m_1) \sqsubseteq (n_2, m_2) \land (n_2, m_2) \sqsubseteq (n_3, m_3)$$

$$\implies m_1 \subseteq m_2 \land n_1 \subseteq n_2 \land m_2 \subseteq m_3 \land n_2 \subseteq n_3$$

$$\implies m_1 \subseteq m_3 \land n_1 \subseteq n_3$$

$$\implies (n_1, m_1) \sqsubseteq (n_2, m_2)$$

2. Note that the order \sqsubseteq^n is the lexicographical order.

Let $\overline{a} = (a_1 \times \cdots \times a_n)$ and $\overline{b} = (b_1 \times \cdots \times b_n)$.

a) Reflexivity:

$$\overline{a} \sqsubseteq^n \overline{a}$$

Proof. Immediate from the definition of \sqsubseteq^n .

Antisymmetry:

$$\overline{a} \sqsubseteq^n \overline{b} \wedge \overline{b} \sqsubseteq^n \overline{a} \implies \overline{a} = \overline{b}$$

Proof.

Case $(\overline{a} \sqsubset^n \overline{b} \land \overline{b} \sqsubset^n \overline{a})$. \not

In particular from $\exists i \in [1, n] : \forall j < i : a_j = b_j \land a_i \sqsubset_i b_i \text{ follows that } \exists i' \in [1, n] : \forall j' < i' : b_{j'} = a_{j'} \land b_{i'} \sqsubset_{i'} a_{i'} \text{ because } \forall i \in [1, n] : (a_i = b_i \implies a_i \not\sqsubset_i b_i \land b_i \not\sqsubset_i a_i) \land (a_i \sqsubset_i b_i \implies a_i \neq b_i)$

Case $(\overline{a} = \overline{b})$.

Transitivity: $\overline{a} \sqsubseteq^n \overline{b} \wedge \overline{b} \sqsubseteq^n \overline{c} \implies \overline{a} \sqsubseteq^n \overline{c}$

Proof.

Case $(\overline{a} \sqsubset^n \overline{b} \land \overline{b} \sqsubset^n \overline{c})$. We know that

$$\exists i \in [1, n] : \forall j < i : a_j = b_j \land a_i \sqsubseteq_i b_i$$

$$\exists i' \in [1, n] : \forall j' < i' a_{j'} = b_{j'} \land a_{i'} \sqsubseteq_{i'} b_{i'}.$$

- If i = i' then because of transitivity of \sqsubseteq_i it holds that $a_i \sqsubseteq_i c_i$ such that $\forall j < i : a_j = b_j \land a_i \sqsubseteq_i c_i$.
- If $i \neq i'$ then it holds that $\forall j < i'' : a_j = b_j \wedge a_{i''} \sqsubset_{i''} c_{i''}$ where i'' = min(i, i').
- If $i \neq i'$ then $\forall j < i' : a_j = b_j \land a_{i'} \sqsubset_{i'} c_{i'}$.

Case $(\overline{a} \sqsubset^n \overline{b} \land \overline{b} = \overline{c})$. Immediate.

Case $(\overline{a} = \overline{b} \wedge \overline{b} \sqsubset^n \overline{c})$. Immediate.

Case $(\overline{a} = \overline{b} \wedge \overline{b} = \overline{c})$. Immediate.

b) We need to show that $\forall \overline{a}, \overline{b} \in P_1 \times \cdots \times P_n : \overline{a} \sqsubseteq^n \overline{b} \vee \overline{b} \sqsubseteq^n \overline{a}$.

Proof by construction.

Case $(\overline{a} = \overline{b})$. Immediate.

Case $(\overline{a} \neq \overline{b})$. We use the following algorithm to find $i \in [1, n]$ such that $\forall j < i : a_j = b_j \land (a_i \sqsubseteq_i b_i \lor b_i \sqsubseteq_i a_i)$.

- 1. i=0;
- 2. Due to the the total ordering of $(P_1, \sqsubseteq_1), \ldots, (P_n, \sqsubseteq_n)$ we know that either $a_i \sqsubseteq_i b_i$, $b_i \sqsubseteq_i a_i$ or $a_i = b_i$.

If $a_i \sqsubseteq_i b_i$ or $b_i \sqsubseteq_i a_i$ i has been found.

Otherwise $a_i = b_i$

- A. i := i+1;
- B. Goto 2.

The algorithm terminates as $\bar{a} \neq \bar{b}$.

It is easy to see that $\forall j < i : a_j = b_j \land (a_i \sqsubseteq_i b_i \lor b_i \sqsubseteq_i a_i)$.

c)
$$\top^n = (\top^1 \times \cdots \times \top^n)$$
 and $\bot^n = (\bot^1 \times \cdots \times \bot^n)$

d) If $T^1 \dots T^n$ exist then T^n exists. If $L^1 \dots L^n$ exist then L^n exists.