Static Program Analysis

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Solution Sheet 4

05.06.2014

Exercise 1 (Complete lattices)

- 1. Let $M = \{a, b, c\}$. Define a relation R such that (M, R) is a complete lattice.
- 2. For a totally ordered set S, $(\mathcal{P}(S), \subseteq)$ is a complete lattice. Define another relation R such that $(\mathcal{P}(S), R)$ is a complete lattice.
- 3. Is (\mathbb{R}, \leq) a complete lattice? If not, how can you extend \mathbb{R} such that it becomes a complete lattice?
- 4. In Exercise 1 on Exercise Sheet 1 you have used the powerset lattice $L_{\mathcal{P}} = (\mathcal{P}(\mathbf{Var}_{\star} \times \{-, 0, +\}), \subseteq)$ in the Detection of Signs Analysis. Alternatively, you could have used the lattice $L = (\mathbf{Var}_{\star} \to \mathcal{P}(\{-, +, 0\}), \subseteq)$.
 - Provide the definition of the appropriate relation \sqsubseteq .
 - What are the values of \top and \perp in L?
 - What is $l_1 \sqcup l_2$?
 - Is there any difference in the precision between the two approaches?

Solution

- 1. Define a < b and b < c. Then (M, \leq) is a complete lattice where \leq is the reflexive and transitive hull of <.
- 2. An easy solution is $(\mathcal{P}(S), \supseteq)$. Another relation can be constructed like this: Let < be a total order on S. You can order all elements of a subset of S with <. Using this, you can construct a monotonic sequence of the subset (**Careful!** This does not work in general! For this to work, the subset must have a least element). If we take the lexicographical order $<_l$ on these sequences, we get again a complete lattice for $(\mathcal{P}(S), <_l)$.
- 3. (\mathbb{R}, \leq) is not a complete lattice. For example, $\sqcup \mathbb{N}$ does not exist. The extension $(\mathbb{R} \cup \{\pm \infty\}, \leq)$ with

$$\forall x \in \mathbb{R} : -\infty < x < +\infty \tag{1}$$

is a complete lattice.

- 4. \sqsubseteq is the pointwise ordering
 - $\top = x \mapsto \emptyset$ and $\bot = x \mapsto \{-, +, 0\}$
 - $(l_1 \sqcup l_2)(x) = l_1(x) \cup l_2(x)$
 - The two lattices are order isomorphic (i.e., there is a bijective map $f: L_{\mathcal{P}} \mapsto L$ defined as $f(x) = \lambda y.\{w \mid (v, w) \in x\}$ such that $x \subseteq y \Leftrightarrow f(x) \sqsubseteq f(y)$).

Definitions

1. A complete partial order (M, \leq) has a *flat* ordering iff

$$\forall x, y \in M : x \leq y \Rightarrow x = \bot \lor x = y$$

- 2. Let (M, \leq) and (N, \leq) be pointed complete partial orders, and $f: M \to N$. f is
 - a) monotone iff $x \leq y \Rightarrow f(x) \leq f(y)$;
 - b) strict iff $f(\perp) = \perp$.
- 3. Let (M, \leq) and (N, \leq) be complete lattices, and $f : M \to N$. f is (Scott) continuous iff f preserves least upper bounds of chains, i.e. for all chains it holds that

$$f\left(\bigsqcup_{i\in I} x^{(i)}\right) = \bigsqcup_{i\in I} f(x^{(i)})$$

Exercise 2

Given functions $f: M \to N$ and $g: N \to P$, which of the following statements are true? Give a proof or a counter example.

For pointed complete partial orders (M, \leq) and (N, \leq) :

- 1. If (N, \leq) has a flat ordering and f is monotone, then f is strict or constant.
- 2. If (M, \leq) has a flat ordering and f is strict, then f is monotone.

For complete lattices $(M, \leq), (N, \leq)$, and (P, \leq) :

- 3. If (M, \leq) satisfies the Ascending Chain Condition and f is monotone, then f is continuous.
- 4. If f is monotone, then f is strict.
- 5. If f and g are monotone (continuous, strict), then $g \circ f$ is monotone (continuous, strict).
- 6. If f is monotone and $\langle x^{(i)} \rangle_{i \in I}$ is a chain in M, then $\bigsqcup_{i \in I} f(x^{(i)}) \leq f(\bigsqcup_{i \in I} x^{(i)})$.
- 7. If f is continuous, then f is also monotone.

Solution

- 1. $\forall x \in M : f$ monotone and $\perp \leq x \Rightarrow f(\perp) \leq f(x)$. Since N has a flat ordering, it follows that $f(\perp) = \perp \lor f(\perp) = f(x)$. This means that f is either strict $(f(\perp) = \perp)$, or f is constant, because for every $x \in M : f(x) = f(\perp)$.
- 2. Let $x, y \in M$. Since M has a flat ordering, it holds that

2

$$x \le y \Rightarrow x = \perp \lor x = y \tag{2}$$

As f is strict, it follows that

$$f(x) = f(\bot) = \bot \le f(y) \quad \lor \quad f(x) = f(y) \tag{3}$$

Therefore $f(x) \leq f(y)$, and f is monotone.

3. Let $\langle x^{(i)} \rangle_{i \in I}$ be an (arbitrary) chain in M and $x^{(i_0)} = \bigsqcup_{i \in I} x^{(i)}$. Because f is monotone

$$\forall i \in I : f(x^{(i)}) \le f(x^{(i_o)})$$
$$\implies f(x^{(0)}) \le \dots \le f(x^{(i_0)}) = \bigsqcup_{i \in \mathbb{I}} f(x^{(i)})$$

It follows that

$$f(\bigsqcup_{i \in I} x^{(i)}) = f(x^{(i_0)}) = \bigsqcup_{i \in I} f(x^{(i)}).$$

- 4. Define partial orders $M = N = (\{\perp, b\}, \leq)$ with $\perp \leq b$, and $f(\perp) = f(b) = b$. Then f is monotone, but not strict.
- 5. Let $x, y \in M, x \leq y \Rightarrow f(x) \leq f(y) \Rightarrow g(f(x)) \leq g(f(y))$, as f and g are monotone. Hence, $g \circ f$ is monotone.
 - Let $\langle x^{(i)} \rangle_{i \in I}$ be a chain in M.

$$g\left(f\left(\bigsqcup_{i\in I} x^{(i)}\right)\right) = g\left(\bigsqcup_{i\in I} f\left(x^{(i)}\right)\right) = \bigsqcup_{i\in I} g\left(f\left(x^{(i)}\right)\right)$$

Hence, $g \circ f$ is continuous.

- Let $\perp_M \in M$. Then, $f(\perp_M) = \perp_N$ and $g(f(\perp_M)) = g(\perp_N) = \perp_P$. Hence $g \circ f$ is strict.
- 6. It holds that $x^{(j)} \leq \bigsqcup_{i \in I} x^{(i)}$ for all $j \in I$, and because f is monotone, it follows that

$$f(x^{(j)}) \le f(\bigsqcup_{i \in I} x^{(i)}) \quad \forall j \in I.$$
(4)

Hence, $f(\bigsqcup_{i \in I} x^{(i)})$ is an upper bound for the chain $\langle f(x^{(i))} \rangle_{i \in I}$, and by definition

$$\bigsqcup_{i \in I} f(x^{(i)}) \le f(\bigsqcup_{i \in I} x^{(i)}).$$

7. Let $x, y \in M$ with $x \leq y$. Then, $x \sqcup y = y$. Since f is continuous, it follows that

$$f(y) = f(x \sqcup y) = f(x) \sqcup f(y),$$

and hence $f(x) \leq f(y)$.