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Definitions
1. Let (M,≤) and (N,≤) be complete lattices, and f : M → N . f is (Scott)

continuous iff f preserves least upper bounds of chains, i.e. for all chains it holds
that

f

(⊔
i∈I

x(i)

)
=
⊔
i∈I

f(x(i))

2. Let (M,≤) be a complete lattice, and P : M → B = {true, false} a predicate.
P is continuous iff for every chain 〈x(i)〉i∈I in M it holds that P (x(i)) = true for
all i ∈ I implies P (

⊔
i∈I x

(i)) = true.

Exercise 1
Let (M,≤) be a complete lattice, f : M → M a continuous function, and P : M → B
a continuous predicate. Prove that

P (⊥) = true ∧ ∀x ∈M : (P (x) = true⇒ P (f(x)) = true)

implies
P (lfp(f)) = true

where lfp(f) is the smallest fixed point of f .

Solution By induction, P (f (i)(⊥)) = true for all elements in the chain 〈f (i)(⊥)〉i≥0 =⊥≤
f(⊥) ≤ . . .: The base case is P (⊥) = true, and the induction step is

P (f (i)(⊥)) = true⇒ P (f(f (i)(⊥)) = true = P (f (i+1)(⊥)) (1)

P is continuous, this means that for every chain 〈x(i)〉i∈I in M it holds that P (x(i)) =
true for all i ∈ I implies P (

⊔
i∈I x

(i)) = true. This gives P (
⊔

i≥0 f
(i)(⊥)) = true.

Now, we show that
⊔

i≥0 f
(i)(⊥) = lfp(f). Using that f is continuous for the chain

〈f (i)(⊥)〉i∈I means that

f

⊔
i≥0

f (i)(⊥)

 =
⊔
i≥0

f(f (i)(⊥)). (2)
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Note that ⊔
i≥0

f (i)(⊥)

=
⊔
{f (i)(⊥) | i ≥ 0}

=
⊔(
{f (i+1)(⊥) | i ≥ 0} ∪ {⊥}

)
=

⊔(
{f(f (i)(⊥)) | i ≥ 0} ∪ {⊥}

)
=

⊔
{f(f (i)(⊥)) | i ≥ 0} t ⊥

=
⊔
{f(f (i)(⊥)) | i ≥ 0}

=
⊔
i≥0

f(f (i)(⊥))

which gives us (from equation 2) that
⊔

i≥0 f
(i)(⊥) is a fixpoint. Using monotonicity it

holds by induction that
∀i ∈ N : f (i)(⊥) v lfp(f)

• Case i = 0 : f (0)(⊥) = ⊥ v lfp(f)

• Inductive case: f (i+1)(⊥) = f(f (i)(⊥)) v f(lfp(f)) = lfp(f)

So lfp(f) is an upper bound of f (i)(⊥). Because lfp(f) is the least fixpoint and⊔
i≥0 f

(i)(⊥) is the least upper bound, we have that⊔
i≥0

f (i)(⊥) v lfp(f) v
⊔
i≥0

f (i)(⊥).

It follows that
⊔

i≥0 f
(i)(⊥) = lfp(f).

Exercise 2 (Galois connections)
Let (A,≤) and (G,≤) be partial orders, and (α, γ) be a Galois connection between A
and G, i.e. for X ∈ G and Y ∈ A it holds:

X ≤ γ(Y ) ⇐⇒ α(X) ≤ Y

Which of the following statements are true? Give a proof or a counter example.

1. α monotone

2. γ monotone

3. α = α ◦ γ ◦ α

4. γ = γ ◦ α ◦ γ

Solution α(X) ≤ α(X) impliesX ≤ γ(α(X)), and γ(Y ) ≤ γ(Y ) implies α(γ(Y )) ≤ Y .

1. X1 ≤ X2 ⇒ X1 ≤ X2 ≤ γ(α(X2)) ⇒ α(X1) ≤ α(X2).

2. Y1 ≤ Y2 ⇒ α(γ(Y1) ≤ Y1 ≤ Y2 ⇒ γ(Y1) ≤ γ(Y2).

3. It holds that α(γ(α(X))) ≤ α(X) and X ≤ γ(α(γ(α(X)))). Therefore, α(X) ≤
α(γ(α(X))), and we have shown that α = α ◦ γ ◦ α.

4. It holds that γ(Y ) ≤ γ(α(γ(Y ))) and α(γ(α(γ(Y )))) ≤ Y . Hence, γ(α(γ(Y ))) ≤
γ(Y ). And finally, γ = γ ◦ α ◦ γ.
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Exercise 3
Let (L,≤) be a complete lattice, and f : L→ L a monotone function. If (L,≤) satisfies
the ascending chain condition (ACC), then

lfp(f) =
⊔
n

f (n)(⊥)

Solution 〈f (n)(⊥)〉n∈N is an ascending chain: By definition, ⊥≤ f(⊥), and mono-
tonicity of f yields f (i)(⊥) ≤ f (i+1)(⊥) for all i ∈ N. By ACC, there exists n ∈ N :
f (n)(⊥) = f (n+1)(⊥). Hence, f (n)(⊥) := l0 is a fixed point.

Let l be another fixed point, i.e. l = f(l). As ⊥≤ l and by monotonicity of f , it
holds that

f (i)(⊥) ≤ f (i)(l) = l ∀i ∈ N.

Therefore, l0 ≤ l, and l0 is lfp.

Exercise 4 (Comparing different approaches)
Consider the following WHILE program from the slides:

[y := x]1;
[z := 1]2;
while [y > 0]3 do

[z := z ∗ y]4;
[y := y − 1]5;

[y := 0]6

Let F : (P(Var×Lab))12 → (P(Var×Lab))12 be the function defined by the data
flow equations (cf. slides on p. 31 ff.). Further, let (α, γ) be the Galois connection for
the Reaching Definitions analysis (cf. slides on p. 69 ff.)

1. Prove that ~α ◦G ◦ ~γ v F , i.e. show that

α(Gj(γ(RD1), . . . , γ(RD12))) ⊆ Fj(RD1, . . . , RD12)

holds for all j. Here, ~f denotes the application of function f to all entries of a
tuple or vector.

2. Check whether F = ~α ◦G ◦ ~γ.

3. Prove by induction over n that (~α ◦G ◦ ~γ)n(∅) v Fn(∅).

4. Prove that ~α(Gn(∅)) v (~α ◦ G ◦ ~γ)n(∅). You may use that ~α(∅) = ∅ and G v
G ◦ ~γ ◦ ~α.

Solution

1. There are three types of equations that correspond to each other:

a) RDexit(l) = RDentry(l) and CSexit(l) = CSentry(l), RDentry(l) = RDexit(l−
1) and CSentry(l) = CSexit(l − 1).
For the tuples we get: RDl = RDl−1 and CSl = CSl−1.

b) RDexit(l) = (RDentry(l)\{(x, l) | l ∈ Lab}) ∪ {(x, l)} and
CSexit(l) = {tr : (x, l) | tr ∈ CSentry(l)}

c) RDentry(l) = RDexit(l − 1) ∪RDexit(m) and
CSentry(l) = CSexit(l − 1) ∪ CSexit(m)
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a) We show as an example for l = 3 withRDexit(3) = RDentry(3) and CSexit(3) =
CSentry(3) that the assumption holds. All other cases of the same form are
shown analogously.

α ◦Gexit(3)(~γ(RD)) = α ◦Gexit(3)
(
×12

i=1{tr | ∀x ∈ DOM(tr) :

(x,SRD(tr)(x)) ∈ RDi}
)

= α
(
{tr | ∀x ∈ DOM(tr) : (x,SRD(tr)(x)) ∈ RDentry(3)}

)
=
{

(x, SRD(tr)(x)) | x ∈ DOM(tr) ∧

tr ∈ {tr | ∀x ∈ DOM(tr) : (x,SRD(tr)(x)) ∈ RDentry(3)}
}

⊆ RDentry(3) = Fexit(3)(RD)

b) Cf. book

c) similar as (a)

2. Since γ is strictly monotonic, and α and G are monotonic, α ◦ G ◦ γ is strictly
monotonic. Further, F has a fixed point and therefore cannot be strictly mono-
tonic. Hence, it holds that

~α ◦G ◦ ~γ @ F

3. n = 0:
(~α ◦G ◦ ~γ)0(~∅) v F 0(~∅) = ~∅

n− 1→ n:

(~α ◦G ◦ ~γ)n(~∅) = (~α ◦G ◦ ~γ) ◦ (~α ◦G ◦ ~γ)n−1(~∅)

vIH (~α ◦G ◦ ~γ) ◦ Fn−1(~∅)

v2. F ◦ Fn−1(~∅) = Fn(~∅)

since F is monotone.

4. As α is monoton, we can deduce:

~α ◦Gn(~∅) v ~α ◦ (G ◦ ~γ ◦ ~α)n(~∅)

= (~α ◦G ◦ ~γ)n ◦ ~α(~∅)

= (~α ◦G ◦ ~γ)n(~∅)
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