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Definitions
1. Let (M,<) and (N,<) be complete lattices, and f : M — N. f is (Scott)

continuous iff f preserves least upper bounds of chains, i.e. for all chains it holds
that
() =
iel el

2. Let (M, <) be a complete lattice, and P : M — B = {true,false} a predicate.
P is continuous iff for every chain (z());c; in M it holds that P(z(*)) = true for
all ¢ € I implies P(| |;; ) = true.

Exercise 1
Let (M, <) be a complete lattice, f : M — M a continuous function, and P : M — B
a continuous predicate. Prove that

P(Ll)=true AVz € M : (P(x) =true = P(f(z)) = true)

implies
P(ifp(f)) = true
where Ifp(f) is the smallest fixed point of f.

Solution By induction, P(f¥ (L)) = true for all elements in the chain () (1));>o =1 <
f(L) <...: The base case is P(L) = true, and the induction step is

P(fO(1)) = true = P(f(f"(1)) = true = P(f**V (L)) (1)

P is continuous, this means that for every chain (z(");c; in M it holds that P(z(®) =
true for all ¢ € I implies P(| |,.; (")) = true. This gives P(lU;>0 f@(L)) = true.

Now, we show that |—|2'20 f(i)(J-) = Ifp(f). Using that f is continuous for the chain
<f(i)(J-)>¢€1 means that

FLL AW | =[] e w)). (2)

>0 1>0
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Note that

| |9

>0

LJtr@ ) 1= 0}

= Lty iz 0pufay)
L (trar@ ) iz 0pu{L})
= L@@y lizoput

= | J{rsPwy 1i= o0y

= L9y

i>0

which gives us (from equation 2) that | |;5q f ()(1) is a fixpoint. Using monotonicity it
holds by induction that A
vieN: fO(L) Cip(f)

e Casei=0:fO(L)=LCIfp(f)
e Inductive case: fO+t)(L) = f(fO(L)) E fifp(f)) = Ufp(f)

So Ifp(f) is an upper bound of f¥(1). Because Ifp(f) is the least fixpoint and
Li>o f@(L) is the least upper bound, we have that

|| e c| | 2w

i>0 i>0

It follows that | |;5o f@ (L) = Ufp(f).

Exercise 2 (Galois connections)
Let (A, <) and (G, <) be partial orders, and (a, ) be a Galois connection between A
and G, i.e. for X € G and Y € A it holds:

X<AY) <= aX)<Y
Which of the following statements are true? Give a proof or a counter example.
1. o monotone
2. v monotone
3. a=qaqoyouw

4. y=7yoaoy

Solution «a(X) < a(X) implies X < y(a(X)), and v(Y) < (YY) implies a(y(Y)) < Y.
1. X1 <Xy = X;<Xo< 'y(a(Xg)) = a(Xl) < OZ(XQ).
2.1<Ys = oa(y(V1) V1 <Ye = (Y1) <y(Y2).

3. It holds that a(y(a(X))) < a(X) and X < y(a(y(a(X)))). Therefore, a(X) <
a(y(a(X))), and we have shown that &« = aoyoa.

4. Tt holds that y(Y) < v(a(y(Y))) and a(y(a(y(Y)))) < Y. Hence, y(a(v(Y))) <
~v(Y). And finally, y =yo«ao~.



Exercise 3
Let (L, <) be a complete lattice, and f : L — L a monotone function. If (L, <) satisfies
the ascending chain condition (ACC), then

ifp(f) =] | ™)

Solution (f(™ (L)), is an ascending chain: By definition, 1< f(L), and mono-
tonicity of f yields f@® (L) < f0+D (L) for all i € N. By ACC, there exists n € N :
fM (L) = f™+D(L). Hence, f(™ (L) := Iy is a fixed point.
Let [ be another fixed point, i.e. [ = f(I). As L< [ and by monotonicity of f, it
holds that
FOL <D0 =1 VieN.

Therefore, Iy < [, and g is lfp.

Exercise 4 (Comparing different approaches)
Consider the following WHILE program from the slides:

ly = 2]’
[z :=1]%
while [y > 0]3do
2= 2y
ly ==y — 1%
[y :=0°
Let F: (P(Var x Lab))!? — (P(Var x Lab))!? be the function defined by the data

flow equations (cf. slides on p. 31 ff.). Further, let (c,) be the Galois connection for
the Reaching Definitions analysis (cf. slides on p. 69 ff.)

1. Prove that @ o G o4 C F, i.e. show that
a(Gj(v(RD1),...,7(RD12))) € Fj(RDx,...,RD12)

holds for all j. Here, f denotes the application of function f to all entries of a
tuple or vector.

2. Check whether FF = do G o7.
3. Prove by induction over n that (@ o G o)"(0) C F™(().

4. Prove that @(G™(0)) C (& o G o7)"(0). You may use that @(0)) = () and G C
Goyoa.

Solution

1. There are three types of equations that correspond to each other:

a) RDexit(l) = RDentry(l) and CSem't(l) = CSentry(l)a RDentry(l) = RDem‘t(Z -
1) and CSentry(l) = CSeJ:it(l — 1)
For the tuples we get: RD; = RD;_1 and CS; = CS;_;.

b) RDeczit(l) = (RDentry(1)\{(2,1) | I € Lab}) U {(z,{)} and
CSerit(l) = {tr : (z,1) | tr € CSentry(1)}

C) RDentry(l) = R-De:vit(l — ].) @] RDem-t(m) and
CSentry(l) = Csem't(l - 1) U Csemit(m)



a) We show as an example for | = 3 with RD¢it(3) = RDeptry(3) and CSeqzit(3) =
CSentry(3) that the assumption holds. All other cases of the same form are
shown analogously.

@0 Gezit(3)(F(RD)) = a0 Geait(3) (%2, {tr | Vz € DOM(tr) :
(z, SRD(tr)(z)) € RD;})
= a({tr | Yo € DOM(tr) : (z, SRD(tr)(z)) € RDentry(3)})

{ (z, SRD(tr)(z)) | © € DOM(#r) A
tr € {tr | Yz € DOM(tr) : (z, SRD(tr)(z)) € RDentry(B)}}
- RDent’/’y(3) = Femt(?’)(RD)

b) Cf. book
c¢) similar as (a)
2. Since ~y is strictly monotonic, and « and G are monotonic, « o G o 7y is strictly
monotonic. Further, F' has a fixed point and therefore cannot be strictly mono-

tonic. Hence, it holds that
doGoyLC F

(@oGo)B)C FO() =0
n—1-—n:

-

(@0 GoF)"(fl) = (GoGoF)o(d@oGoF)" (1)
C' (@0 GoF) o ()
C> Fo F" () = F"(0)
since I' is monotone.

4. As « is monoton, we can deduce:



