Static Program Analysis

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Solution Sheet 7

10.07.2014

Definitions

t ::=	terms:
x	variable
$\lambda x.t$	abstraction
t t	application

Figure 1: Syntactic forms of the lambda calculus

- 1. Let \mathcal{V} be a countable set of variable names. The set of terms is the smallest set \mathcal{T} such that
 - a) $x \in \mathcal{T}$ for every $x \in \mathcal{V}$
 - b) if $t_1 \in \mathcal{T}$ and $x \in \mathcal{V}$, then $\lambda . t_1 \in \mathcal{T}$;
 - c) if $t_1 \in \mathcal{T}$ and $t_2 \in \mathcal{T}$, then $t_1 t_2 \in \mathcal{T}$;
- 2. The *size* of a term is defined as

size(x) = 1 $size(\lambda.t_1) = size(t_1) + 1$ $size(t_1 t_2) = size(t_1) + size(t_2) + 1$

3. The set of *free variables* of a term t, written FV(t), is defined inductively as follows:

$$FV(x) = x$$

$$FV(\lambda x.t_1) = FV(t_1) \setminus x$$

$$FV(t_1 t_2) = FV(t_1) \cup FV(t_2)$$

4. The set of *bound variables* of a term t, written BV(t), is defined inductively as follows:

$$BV(x) = \emptyset$$
$$BV(\lambda x.t_1) = x \cup BV(t_1)$$
$$BV(t_1 t_2) = BV(t_1) \cup BV(t_2)$$

Exercise 1 (Properties of FV)

- 1. Give a proof that $|FV(t)| \leq size(t)$ for every term t.
- 2. Provide an example for a term t such that $FV(t) \cap BV(t) \neq \emptyset$.

Solution

1. *Proof.* By induction on the size of t. Assuming the desired property for terms smaller than t, we must prove it for t itself; if we succeed, we may conclude that the property holds for all t. There are three cases to consider:

Case t = x: $|FV(t)| = |\{x\}| = 1 = \text{size}(t)$. Case $t = \lambda x.t_1$: By IH we have that $|FV(t_1)| \le \text{size}(t_1)$. Now we can show that $|FV(t)| = |FV(t_1 \setminus x)| \le |FV(t_1|IH \le \text{size}(t_1) < \text{size}(t)$. Case $t = t_1 t_2$: By IH we have that $|FV(t_1)| \le \text{size}(t_1)$ and $|FV(t_2)| \le \text{size}(t_2)$. Thus, $|FV(t)| = |FV(t_1) \cup FV(t_2)| \le |FV(t_1)| + |FV(t_2)| \le \text{size}(t_1) + \text{size}(t_2) < \text{size}(t)$. \Box

2. $\lambda x.x x$

Exercise 2 (Equality on traces)

We are now looking at a universe $\mathcal{U} = \text{Trace} \times \text{Trace}$, where $\text{Trace} = \Sigma^*$ is just the set of all finite traces over the alphabet $\Sigma = (\text{Var} \times \text{Lab})$. Let EQ be the equality relation on Σ^* :

$$EQ = \{(v, v) \mid v \in \Sigma^*\}$$

Given the monotone function $F : \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$:

$$F(R) = \{(\epsilon, \epsilon)\} \cup \{(av, aw) \mid a \in \Sigma \text{ and } (v, w) \in R\}$$

- What is gfp F?
- Prove equality is the least fixpoint of F:

$$\operatorname{lfp} F \stackrel{?}{=} EQ$$

Hint: Considers the definitions of F-consistent (post-fixpoint), F-closed (pre-fixpoint), and the Knaster-Tarski-Theorem. In particular, you can use the principle of induction: if X is F-closed, then lfp $F \subseteq X$. You can also use Lemma 1.

Lemma 1.

$$\forall j \in \mathbb{N} : F^{(j)}(\emptyset) \subseteq \operatorname{lfp} F.$$

Solution

• By construction of F, any post-fixpoint of F has to be a set of pairs of equal traces. Otherwise we have $F(R_{\neq}) \not\subseteq R_{\neq} \wedge F(R_{\neq}) \not\supseteq R_{\neq}$. We shall show both parts separately.

Case $F(R) \not\subseteq R$:

It is easy to see that for all R there exist a word $av_1 \cdots v_n \in F(R)$ where $v_1 \cdots v_n$ is the longest word in R that is not in R which gives us $F(R) \not\subseteq R$

Case $F(R_{\neq}) \not\supseteq R_{\neq}$:

We cannot construct any set containing an unequal pair of traces R_{\neq} such that $F(R_{\neq}) \supseteq R_{\neq}$ because for R_{\neq} being a post-fixpoint of F all proper suffix pairs have to be in R_{\neq} and all nonempty suffix pairs have to begin with the same

symbol in Σ to be in F(R), which is, however, not possible for an unqual pair of traces and we get $F(R_{\neq}) \not\supseteq R_{\neq}$.

For a set of pairs of equal traces that are not suffix-closed, e.g. $\{(\epsilon, \epsilon), (aa, aa)\}$ a similar argumentation can be used. All other (suffix-closed) sets of pairs of equal traces are post-fixpoints. By construction of F, each such pair $(v_1 \cdots v_n, v_1 \cdots v_n)$ is in $F^{(n+1)}(\emptyset)$ such that the union of all post-fixpoints is the same as $\bigsqcup_{n\geq 0} F^{(n)}(\emptyset)$.

According to Knaster-Tarski we obtain,

$$\bigsqcup_{n\geq 0} F^{(n)}(\emptyset)$$

is the gfp F. As proved earlier we have that $\bigsqcup_{n\geq 0} F^{(n)}(\emptyset) \subseteq \operatorname{lfp} F$. Because we know that $\bigsqcup_{n\geq 0} F^{(n)}(\emptyset)$ is a fixpoint, we have that

$$\bigsqcup_{n\geq 0} F^{(n)}(\emptyset)$$

is also the lfp F. Thus lfp F = gfp F is the unique fixpoint of F.

The set EQ is a fixpoint, and there is no bigger fixpoint in $\mathcal{P}(\mathcal{U})$. Thus, gfp $F = \Sigma^* \times \Sigma^*$.

- *Proof.* To show that $\operatorname{lfp} F \stackrel{?}{=} EQ$ holds, we show $\operatorname{lfp} F \subseteq EQ$ and $\operatorname{lfp} F \supseteq EQ$.
 - 1. To show that lfp $F \subseteq EQ$ by the principle of induction it is sufficient to show that EQ is F-closed.

$$F(EQ)$$

$$= \{(av, aw) \mid a \in \Sigma \text{ and } (v, w) \in EQ\} \cup \{(\epsilon, \epsilon)\}$$

$$= \{(av, av) \mid a \in \Sigma \text{ and } (v, v) \in \{(w, w) \mid w \in \Sigma^*\}\} \cup \{(\epsilon, \epsilon)\}$$

$$= \{(av, av) \mid a \in \Sigma \text{ and } (v, v) \in (\Sigma^* \times \Sigma^*)\} \cup \{(\epsilon, \epsilon)\}$$

$$= \{(av, av) \mid a \in \Sigma \text{ and } v \in \Sigma^*\} \cup \{(\epsilon, \epsilon)\}$$

$$= \{(v, v) \mid v \in \Sigma^+\} \cup \{(\epsilon, \epsilon)\}$$

$$= \{(v, v) \mid v \in \Sigma^*\}$$

$$= EQ$$

By the principle of induction, we conclude lfp $F \subseteq EQ$.

2. It remains to show that $\operatorname{lfp} F \supseteq EQ$. Suppose that $(v_1 \cdots v_n, v_1 \cdots v_n) \in EQ \setminus \operatorname{lfp} F$, i.e., $\operatorname{lfp} F \supseteq EQ$ does not hold. In particular, $(v_1 \cdots v_n, v_1 \cdots v_n) \notin \operatorname{lfp} F$. By construction of F, $(v_1 \cdots v_n, v_1 \cdots v_n) \in F^{(n+1)}(\emptyset)$, too. But using

Lemma 1 we know that $F(\emptyset)^{(j)} \subseteq \operatorname{lfp} F$. It follows that $(v_1 \cdots v_n, v_1 \cdots v_n) \in \operatorname{lfp} F$ which contradicts our assumption.

Finally we obtain lfp F = EQ.