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Definitions

t ::= terms :

x variable

λx.t abstraction

t t application

Figure 1: Syntactic forms of the lambda calculus

1. Let V be a countable set of variable names. The set of terms is the smallest set
T such that

a) x ∈ T for every x ∈ V
b) if t1 ∈ T and x ∈ V, then λ.t1 ∈ T ;

c) if t1 ∈ T and t2 ∈ T , then t1 t2 ∈ T ;

2. The size of a term is defined as

size(x) = 1

size(λ.t1) = size(t1) + 1

size(t1 t2) = size(t1) + size(t2) + 1

3. The set of free variables of a term t, written FV(t), is defined inductively as
follows:

FV(x) = x

FV(λx.t1) = FV(t1) \ x
FV(t1 t2) = FV(t1) ∪ FV(t2)

4. The set of bound variables of a term t, written BV(t), is defined inductively as
follows:

BV(x) = ∅
BV(λx.t1) = x ∪ BV(t1)

BV(t1 t2) = BV(t1) ∪ BV(t2)

Exercise 1 (Properties of FV)
1. Give a proof that |FV(t)| ≤ size(t) for every term t.

2. Provide an example for a term t such that FV(t) ∩ BV(t) 6= ∅.
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Solution

1. Proof. By induction on the size of t. Assuming the desired property for terms
smaller than t, we must prove it for t itself; if we succeed, we may conclude that
the property holds for all t. There are three cases to consider:

Case t = x:
|FV(t)| = |{x}| = 1 = size(t).
Case t = λx.t1:
By IH we have that |FV(t1)| ≤ size(t1). Now we can show that |FV(t)| =
|FV(t1 \ x)| ≤ |FV(t1|IH ≤ size(t1) < size(t).
Case t = t1 t2:
By IH we have that |FV(t1)| ≤ size(t1) and |FV(t2)| ≤ size(t2). Thus, |FV(t)| =
|FV(t1) ∪ FV(t2)| ≤ |FV(t1)|+ |FV(t2)| ≤ size(t1) + size(t2) < size(t).

2. λx.x x

Exercise 2 (Equality on traces)
We are now looking at a universe U = Trace ×Trace, where Trace = Σ∗ is just the
set of all finite traces over the alphabet Σ = (Var × Lab). Let EQ be the equality
relation on Σ∗:

EQ = {(v, v) | v ∈ Σ∗}

Given the monotone function F : P(U)→ P(U):

F (R) = {(ε, ε)} ∪ {(av, aw) | a ∈ Σ and (v, w) ∈ R}

• What is gfpF?

• Prove equality is the least fixpoint of F :

lfpF
?
= EQ

Hint: Considers the definitions of F -consistent (post-fixpoint), F -closed (pre-fixpoint),
and the Knaster-Tarski-Theorem. In particular, you can use the principle of induction:
if X is F -closed, then lfpF ⊆ X. You can also use Lemma 1.

Lemma 1.
∀j ∈ N : F (j)(∅) ⊆ lfpF.

Solution

• By construction of F , any post-fixpoint of F has to be a set of pairs of equal
traces. Otherwise we have F (R6=) 6⊆ R6= ∧ F (R6=) 6⊇ R6=. We shall show both
parts separately.

Case F (R) 6⊆ R:
It is easy to see that for all R there exist a word av1 · · · vn ∈ F (R) where v1 · · · vn
is the longest word in R that is not in R which gives us F (R) 6⊆ R
Case F (R6=) 6⊇ R6=:
We cannot construct any set containing an unequal pair of traces R6= such that
F (R6=) ⊇ R 6= because for R6= being a post-fixpoint of F all proper suffix pairs
have to be in R 6= and all nonempty suffix pairs have to begin with the same
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symbol in Σ to be in F (R), which is, however, not possibe for an unqual pair of
traces and we get F (R6=) 6⊇ R 6=.

For a set of pairs of equal traces that are not suffix-closed, e.g. {(ε, ε), (aa, aa)} a
similar argumentation can be used. All other (suffix-closed) sets of pairs of equal
traces are post-fixpoints. By construction of F , each such pair (v1 · · · vn, v1 · · · vn)
is in F (n+1)(∅) such that the union of all post-fixpoints is the same as

⊔
n≥0 F

(n)(∅).
According to Knaster-Tarski we obtain,⊔

n≥0
F (n)(∅)

is the gfpF . As proved earlier we have that
⊔

n≥0 F
(n)(∅) ⊆ lfpF . Because we

know that
⊔

n≥0 F
(n)(∅) is a fixpoint, we have that⊔

n≥0
F (n)(∅)

is also the lfpF . Thus lfpF = gfpF is the unique fixpoint of F .

The set EQ is a fixpoint, and there is no bigger fixpoint in P(U). Thus, gfpF =
Σ∗ × Σ∗.

• Proof. To show that lfpF
?
= EQ holds, we show lfpF ⊆ EQ and lfpF ⊇ EQ.

1. To show that lfpF ⊆ EQ by the principle of induction it is sufficient to show
that EQ is F -closed.

F (EQ)

= {(av, aw) | a ∈ Σ and (v, w) ∈ EQ} ∪ {(ε, ε)}
= {(av, av) | a ∈ Σ and (v, v) ∈ {(w,w) | w ∈ Σ∗}} ∪ {(ε, ε)}
= {(av, av) | a ∈ Σ and (v, v) ∈ (Σ∗ × Σ∗)} ∪ {(ε, ε)}
= {(av, av) | a ∈ Σ and v ∈ Σ∗} ∪ {(ε, ε)}
= {(v, v) | v ∈ Σ+} ∪ {(ε, ε)}
= {(v, v) | v ∈ Σ∗}
= EQ

By the principle of induction, we conclude lfpF ⊆ EQ.

2. It remains to show that lfpF ⊇ EQ. Suppose that (v1 · · · vn, v1 · · · vn) ∈
EQ\lfpF , i.e., lfpF ⊇ EQ does not hold. In particular, (v1 · · · vn, v1 · · · vn) /∈
lfpF .
By construction of F , (v1 · · · vn, v1 · · · vn) ∈ F (n+1)(∅), too. But using
Lemma 1 we know that F (∅)(j) ⊆ lfpF . It follows that (v1 · · · vn, v1 · · · vn) ∈
lfpF which contradicts our assumption.

Finally we obtain lfpF = EQ.
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