
Prof. P. Thiemann, M. Geffken Summer Term 2014

Static Program Analysis

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Solution Sheet 9

24.07.2014

Abstract interpretation

Exercise 1 (Widening operators)
Show that the operator ∇ on Interval with

⊥∇X = X∇⊥ = X

and

[i1, j1]∇[i2, j2] = [if i2 < i1 then −∞ else i1, if j2 > j1 then +∞ else j1]

is a widening operator. First, state precisely what you need to show, and then show
that these properties are indeed fulfilled.

Solution

• ∇ is an upperbound operator: Let l1 = [i1, j1], l2 = [i2, j2].

i2 < i1, j2 > j1 : l1 v [−∞,+∞] w l2
i2 < i1, j2 ≤ j1 : l1 v [−∞, j1] w l2
i2 ≥ i1, j2 > j1 : l1 v [i1,+∞] w l2
i2 ≥ i1, j2 ≤ j1 : l1 v [i1, j1] w l2

• For all ascending chains (ln)n, the ascending chain l0, l0∇l1, (l0∇l1)∇l2, . . . even-
tually stabilizes.
For an arbitrary element l0 = [n,m], we have to consider the following cases for
l1 = [k, l]:

k < n, l > m ⇒ l0∇l1 = [−∞,+∞]

k = n, l > m ⇒ l0∇l1 = [n,+∞]

k < n, l = m ⇒ l0∇l1 = [−∞,m]

k = n, l = m ⇒ l0∇l1 = [n,m]

Hence, if the chain (ln)n eventually stabilizes, then so will the chain (l∇i)i. Oth-
erwise, it converges to the upper bound [−∞,+∞].

Exercise 2 (Abstractions)
Let S be the set of strings over a (finite) alphabet Σ. An abstraction of the string is the
set of characters/symbols of which the string is built. Example: Program analysis is
abstracted by {P,r,o,g,a,m, ’ ’,n,l,y,s,i}.

Specify the details of the Galois connection (P(S), α, γ,P(Σ) formally. Is this Galois
connection also a Galois insertion (also called Galois surjection on the slides “Abstrac-
tion III”)?

1

http://proglang.informatik.uni-freiburg.de/teaching/programanalysis/2014ss/

Solution
Let Σs be the set of all of the letters that occur in a particular string. We define the
abstraction and concretisation function as follows:

α(S) =
⋃
{Σs | s ∈ S}

γ(σ) = {s |Σs ⊆ σ}

α and γ are clearly monotone. Further, for a set of strings S = {s1, . . . , sn}:

γ(α(S)) = γ(∪{Σs | s ∈ S}) = {s′ |Σs′ ⊆ ∪{Σs′ | s ∈ S}} ⊇ S

and
α(γ(σ)) = α({s |Σs ⊆ σ}) =

⋃
{Σs | s ∈ {s |Σs ⊆ σ}} = σ

Therefore, the Galois connection is also a Galois insertion.

Exercise 3 (Galois insertions)
Let (L1, α1, γ1,M1) and (L2, α2, γ2,M2) be Galois insertions (Galois surjections). First
define

α(l1, l2) = (α1(l1), α2(l2))

γ(m1,m2) = (γ1(m1), γ2(m2))

and show that (L1 × L2, α, γ,M1 ×M2) is a Galois insertion. Then define

α(f) = α2 ◦ f ◦ γ1
γ(g) = γ2 ◦ g ◦ α1

and show that (L1 → L2, α, γ,M1 →M2), where L1 × L2 and M1 ×M2 are Monotone
Function Spaces (see book on p. 398), is a Galois insertion.

Solution
We have to show that α and γ are monotone, and that

γ ◦ α w λl.l

α ◦ γ = λm.m

1. α and γ are monotone, because α1, α2, γ1, and γ2 are monotone. Further, let
l = (l1, l2) ∈ L1 × L2.

l v γ(α(l)) ⇔ l1 v γ(α(l1)) and l2 v γ(α(l2))

This holds because (L1, α1, γ1,M1) and (L2, α2, γ2,M2) are Galois insertions.
Similarly, for (m1,m2) ∈M1 ×M2, we have

m = α(γ(m)) ⇔ m1 = α(γ(m1)) and m2 = α(γ(m2))

2. Consider the Monotone Function Space in the book on p. 398.

First, we observe that α and γ are monotone because α2 and γ2 are. The detailed
reasoning for α is as follows (the same reasoning applies to γ):

f v f ′

=⇒ ∀x : f(x) v f ′(x)

=⇒ ∀x : α2 ◦ f(x) v α2 ◦ f ′(x) (because α2 is monotone)

=⇒ ∀y : α2 ◦ f ◦ γ1(y) v α2 ◦ f ′ ◦ γ1(y)

=⇒ α2 ◦ f ◦ γ1 v α2 ◦ f ′ ◦ γ1
=⇒ α(f) v α(f ′)

2

Next, we show that γ(α(f)) = f for f ∈M1 →M2 and calculate

γ(α(f)) = (γ2 ◦ α2) ◦ f ◦ (γ1 ◦ α1) w f

using the monotonicity of f and γ{1,2} ◦ α{1,2} w λl.l = id.

It remains to show that α(γ(f)) = f for f ∈M1 →M2:

α(γ(f)) = α(γ2 ◦ f ◦ α1) = (α2 ◦ γ2) ◦ f ◦ (α1 ◦ γ1) = f

We have used α{1,2} ◦ γ{1,2} = λl.l = id.

Control Flow Analysis

Exercise 4 (Analyzing a program by hand)
Consider the following program:

let f = fn y ⇒ y in
let g = fn x ⇒ f in

let h = fn v ⇒ v in
g (g h)

Add labels to the program, and guess an analysis result. Use Table 3.1 in the book, p.
146, to verify that it is indeed an acceptable guess.

Solution
When adding labels, the program is given by:(
let f = (fn y ⇒ y1)2 in[

let g = (fn x ⇒ f3)4 in(
let h = (fn v ⇒ v5)6 in

[g7(g8 h9)10]11
)12]13)14

A solution might be:

(Ĉ, ρ̂)

1,5 ∅
2,3 {fn y ⇒ y1}

4,7,8 {fn x ⇒ f3}
6,9 {fn v ⇒ v5}

10,11,12,13,14 {fn y ⇒ y1}
f {fn y ⇒ y1}
g {fn x ⇒ f3}
h {fn v ⇒ v5}
v, y ∅
x {fn v ⇒ v5, fn y ⇒ y1}

3

To prove its validity, the following constraints need to hold:

(Ĉ, ρ̂) |=()14 iff

(Ĉ, ρ̂) |= ()2 ∧ (Ĉ, ρ̂) |= []13 ∧ Ĉ(2) ⊆ ρ̂(f) ∧ Ĉ(13) ⊆ Ĉ(14)

(Ĉ, ρ̂) |=()2 iff {fn y ⇒ y1} ⊆ Ĉ(2)

(Ĉ, ρ̂) |=[]13 iff

(Ĉ, ρ̂) |= ()4 ∧ (Ĉ, ρ̂) |= ()12 ∧ Ĉ(4) ⊆ ρ̂(g) ∧ Ĉ(12) ⊆ Ĉ(13)

(Ĉ, ρ̂) |=()4 iff {fn x⇒ f3} ⊆ Ĉ(4)

(Ĉ, ρ̂) |=()12iff

(Ĉ, ρ̂) |= ()6 ∧ (Ĉ, ρ̂) |= []11 ∧ Ĉ(6) ⊆ ρ̂(h) ∧ Ĉ(11) ⊆ Ĉ(12)

(Ĉ, ρ̂) |=()6 iff {fn v ⇒ v5} ⊆ Ĉ(6)

(Ĉ, ρ̂) |=[g7()10]11 iff

(Ĉ, ρ̂) |= g7 ∧ (Ĉ, ρ̂) |= (g8 h9)10∧

(Ĉ, ρ̂) |= f3 ∧ Ĉ(10) ⊆ ρ̂(x) ∧ Ĉ(3) ⊆ Ĉ(11)

(Ĉ, ρ̂) |=(g8 h9)10 iff

(Ĉ, ρ̂) |= g8 ∧ (Ĉ, ρ̂) |= h9∧

(Ĉ, ρ̂) |= f3 ∧ Ĉ(9) ⊆ ρ̂(x) ∧ Ĉ(3) ⊆ Ĉ(10)

Enhancing the analysis
Modify the Control Flow Analysis of Table 3.1. to take account of the left to right
evaluation order imposed by a call-by-value semantics: In the clause [app] there is no
need to analyze the operand if the operator cannot produce any closures. Try to find
a program where the modified analysis accepts a result which is rejected by Table 3.1.

Solution
The constraint (Ĉ, ρ̂) |= tl22 only needs to be fulfilled if tl11 evaluates to a function.

[app] (Ĉ, ρ̂) |= (tl11 tl22)l iff

(Ĉ, ρ̂) |= tl11 ∧(
∀
[
fn x⇒ tl00 ∈ Ĉ(l1)

]
:

(Ĉ, ρ̂) |= tl00 ∧ (Ĉ, ρ̂) |= tl22 ∧

Ĉ(l2) ⊆ ρ̂(x) ∧ Ĉ(l0) ⊆ Ĉ(l)
)

∧
(
∀
[
fun f x⇒ tl00 ∈ Ĉ(l1)

]
:

(Ĉ, ρ̂) |= tl00 ∧ (Ĉ, ρ̂) |= tl22 ∧

Ĉ(l2) ⊆ ρ̂(x) ∧ Ĉ(l0) ⊆ Ĉ(l)∧

{fun fx⇒ tl00 } ⊆ ρ̂(f)
)

4

