
1

PROGRAMMING IN HASKELL

Part 4 - Interactive Programs and Monads

2

We would also like to use Haskell to write
interactive programs that read from the
keyboard and write to the screen, as they are
running.

interactive
program

inputs outputs

keyboard

screen

Introduction

3

The Problem

Haskell programs are pure mathematical
functions:

However, reading from the keyboard and
writing to the screen are side effects:

❚ Haskell programs have no side
effects.

❚ Interactive programs have side
effects.

4

The Solution

Interactive programs can be written in
Haskell by using types to distinguish pure
expressions from impure actions that may
involve side effects.

IO a

The type of actions
that return a value of

type a.

5

For example:

IO Char

IO ()

The type of actions
that return a
character.

The type of purely
side effecting

actions that return
no result value.

❚ () is the type of tuples with no
components.

Note:

6

Basic Actions

The standard library provides a number of
actions, including the following three
primitives:

getChar :: IO Char

❚ The action getChar reads a character
from the keyboard, echoes it to the
screen, and returns the character as its
result value:

7

❚ The action putChar c writes the character
c to the screen, and returns no result
value:

putChar :: Char → IO ()

❚ The action return v simply returns the
value v, without performing any
interaction:

return :: a → IO a

8

A sequence of actions can be combined as a
single composite action using the keyword do.

For example:

Sequencing

a :: IO (Char,Char)

a = do x ← getChar

 getChar

 y ← getChar
 return (x,y)

9

Derived Primitives

getLine :: IO String
getLine = do x ← getChar
 if x == '\n' then
 return []
 else
 do xs ← getLine
 return (x:xs)

❚ Reading a string from the keyboard:

10

putStr :: String → IO ()
putStr [] = return ()
putStr (x:xs) = do putChar x
 putStr xs

❚ Writing a string to the screen:

❚ Writing a string and moving to a new
line:

putStrLn :: String → IO ()
putStrLn xs = do putStr xs
 putChar '\n'

11

Example

We can now define an action that prompts for
a string to be entered and displays its length:

strlen :: IO ()

strlen = do putStr "Enter a string: "

 xs ← getLine
 putStr "The string has "

 putStr (show (length xs))

 putStrLn " characters"

12

For example:

> strlen

Enter a string: abcde
The string has 5 characters

❚ Evaluating an action executes its side
effects, with the final result value being
discarded.

Note:

13

The IO type is an instance of the monad
class.

The Monad Class

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

(>>=) is the bind operator of the monad.

14

The do notation is just syntactic sugar for
the bind operator >>=.

Do notation

e1 >>= \v1 ->
e2 >>= \v2 ->
return (f v1 v2)

do v1 <- e1
 v2 <- e2
 return (f v1 v2)

15

The Maybe Monad

data Maybe a = Nothing | Just a

instance Monad Maybe where

 return x = Just x

 Nothing >>= f = Nothing

 Just x >> = f = f x

The Maybe data type is useful when
interacting with databases, dictionaries,

16

The List Monad

instance Monad [] where

 return x = [x]

 xs >>= f = concatMap f xs

where

concatMap :: (a -> [b]) -> [a] -> [b]

17

Homework!

Prepare Chap. 18.2 “The Monad
Class” from The Haskell School of
Expression by Paul Hudak till next
time.

	PowerPoint Presentation
	Slide 2
	The Problem
	The Solution
	Slide 5
	Basic Actions
	Slide 7
	Sequencing
	Derived Primitives
	Slide 10
	Example
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

