PROGRAMMING IN HASKELL

Part 3 - Declaring Types and Classes
Type Declarations

In Haskell, a new name for an existing type can be defined using a type declaration.

```haskell
type String = [Char]
```

String is a synonym for the type [Char].
Type declarations can be used to make other types easier to read. For example, given

\[
\text{type } \text{Pos} = (\text{Int, Int})
\]

we can define:

\[
\begin{align*}
\text{origin} & \quad :: \quad \text{Pos} \\
\text{origin} & \quad = \quad (0,0) \\
\text{left} & \quad :: \quad \text{Pos} \rightarrow \text{Pos} \\
\text{left} \quad (x,y) & \quad = \quad (x-1,y)
\end{align*}
\]
Like function definitions, type declarations can also have parameters. For example, given

```haskell
type Pair a = (a,a)
```

we can define:

```haskell
mult :: Pair Int → Int
mult (m,n) = m*n

copy :: a → Pair a
copy x = (x,x)
```
Type declarations can be nested:

```haskell
type Pos = (Int,Int)
type Trans = Pos → Pos
```

However, they cannot be recursive:

```haskell
type Tree = (Int,[Tree])
```
Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

```haskell
data Bool = False | True
```

Bool is a new type, with two new values False and True.
Note:

- The two values False and True are called the **constructors** for the type Bool.

- Type and constructor names must begin with an upper-case letter.

- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.
Values of new types can be used in the same ways as those of built in types. For example, given

```
data Answer = Yes | No | Unknown
```

we can define:

```
answers :: [Answer]
answers    = [Yes, No, Unknown]

flip :: Answer → Answer
flip Yes   = No
flip No    = Yes
flip Unknown = Unknown
```
The constructors in a data declaration can also have parameters. For example, given

```haskell
data Shape = Circle Float | Rect Float Float

square :: Float → Shape
square n = Rect n n

area :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y
```
Note:

- Shape has values of the form Circle r where r is a float, and Rect x y where x and y are floats.

- Circle and Rect can be viewed as functions that construct values of type Shape:

 \[
 \text{Circle} :: \text{Float} \rightarrow \text{Shape} \\
 \text{Rect} :: \text{Float} \rightarrow \text{Float} \rightarrow \text{Shape}
 \]
Not surprisingly, data declarations themselves can also have parameters. For example, given

```
data Maybe a = Nothing | Just a
```

we can define:

```
safediv :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)
```

```
safehead :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)
```
Recursive Types

In Haskell, new types can be declared in terms of themselves. That is, types can be recursive.

```
data Nat = Zero | Succ Nat
```

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat → Nat.
A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values:

- Zero
- Succ Zero
- Succ (Succ Zero)
- ...
We can think of values of type Nat as natural numbers, where Zero represents 0, and Succ represents the successor function 1+.

For example, the value

\[\text{Succ (Succ (Succ Zero))} \]

represents the natural number

\[1 + (1 + (1 + 0)) = 3 \]
Using recursion, it is easy to define functions that convert between values of type Nat and Int:

\[
\begin{align*}
\text{nat2int} & : \text{Nat} \rightarrow \text{Int} \\
\text{nat2int Zero} & = 0 \\
\text{nat2int (Succ n)} & = 1 + \text{nat2int n}
\end{align*}
\]

\[
\begin{align*}
\text{int2nat} & : \text{Int} \rightarrow \text{Nat} \\
\text{int2nat 0} & = \text{Zero} \\
\text{int2nat (n+1)} & = \text{Succ (int2nat n)}
\end{align*}
\]
Two naturals can be added by converting them to integers, adding, and then converting back:

\[
\text{add} :: \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat} \\
\text{add} \ m \ n = \text{int2nat} (\text{nat2int} \ m + \text{nat2int} \ n)
\]

However, using recursion the function add can be defined without the need for conversions:

\[
\begin{align*}
\text{add Zero} & \quad n = n \\
\text{add} (\text{Succ} \ m) \ n & = \text{Succ} (\text{add} \ m \ n)
\end{align*}
\]
For example:

\[
\text{add} \ (\text{Succ} \ (\text{Succ} \ Zero)) \ (\text{Succ} \ Zero) \\
= \ \\
\text{Succ} \ (\text{add} \ (\text{Succ} \ Zero) \ (\text{Succ} \ Zero)) \\
= \ \\
\text{Succ} \ (\text{Succ} \ (\text{add} \ Zero \ (\text{Succ} \ Zero))) \\
= \ \\
\text{Succ} \ (\text{Succ} \ (\text{Succ} \ Zero))
\]

Note:

- The recursive definition for add corresponds to the laws \(0+n = n\) and \((1+m)+n = 1+(m+n)\).
Arithmetic Expressions

Consider a simple form of expressions built up from integers using addition and multiplication.
Using recursion, a suitable new type to represent such expressions can be declared by:

```haskell
data Expr = Val Int
          | Add Expr Expr
          | Mul Expr Expr
```

For example, the expression on the previous slide would be represented as follows:

```haskell
Add (Val 1) (Mul (Val 2) (Val 3))
```
Using recursion, it is now easy to define functions that process expressions. For example:

Using recursion, it is now easy to define functions that process expressions. For example:

```
size :: Expr → Int
size (Val n) = 1
size (Add x y) = size x + size y
size (Mul x y) = size x + size y
```

```
eval :: Expr → Int
eval (Val n) = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
```
Note:

- The three constructors have types:

\[
\begin{align*}
\text{Val} & : \text{Int} \rightarrow \text{Expr} \\
\text{Add} & : \text{Expr} \rightarrow \text{Expr} \rightarrow \text{Expr} \\
\text{Mul} & : \text{Expr} \rightarrow \text{Expr} \rightarrow \text{Expr}
\end{align*}
\]

- Many functions on expressions can be defined by replacing the constructors by other functions using a suitable **fold** function (cf. exercises).

\[
eval = \text{fold id (+) (*)}
\]
A new class can be declared using the `class` mechanism.

For example, the class `Eq` from the standard library is declared as:

```haskell
class Eq a where
  (==), (/=) :: a -> a -> Bool
  x /= y = not (x == y)
```
Instance Declarations

Types can now be made into in a type that supports equality by using the instance declaration.

```
instance Eq Bool where
    False == False = True
    True  == True  = True
    _ == _         = False
```
Note:

- Only types declared via `data` can be made into instances of classes.
- Default definitions can be overridden in instance declarations.
Classes can also be extended to form new classes.

```haskell
class Eq a => Ord a where
  (<), (<=), (>), (>=) :: a -> a -> Bool
  min, max :: a -> a -> a
  min x y | x <= y = x
           | otherwise = y
  max x y | x <= y = y
           | otherwise = x
```
Declaring now an equality type as an ordered type requires now only defining four operators:

```haskell
instance Ord Bool where
    False < True = True
    _ < _ = False
    b <= c = (b < c) || (b == c)
    b > c = c < b
    b >= c = c <= b
```
Deriving Instances

For the built-in classes *Eq, Ord, Show* and *Read* you can automatically derive instances of types.

```haskell
data Bool = False | True
           deriving (Eq,Ord,Show,Read)
```

The ordering on the constructors is then determined by their position in its declaration.