
SECURITYPOLICIES AND SlY311?ITYMODELS

J. A. Goguenand J. Mesajuer
SRI International
MenloPark CA 94025

1 Introduction

We assune that the reader is familiar with the
ubiquity of information in the modern world and is
sympatheticwith the need for restricting rights to
read, add, modify,or deleteinformationin
specificcontexts. This need is particularlyacute
for systemshavingcomputersas significant
components.

This papermotivates and outlines a new approach to
securesystemswith the followingnovelproperties:

- It introduces a simple and general
automaton theoretic approach to modelling
securesystens.

- It showshow to use abstractcapabilities
to model the dynamicsecurityaspectsof
such systems.

- The approach can be applied not only to
computer operating systms, but also to
secure message systems, and to data base
systans; it is not limited to systems
which are entirely computer based, but
applies just as well to systems that
contain manual components, and even to
entirely manual systems.

- It introducesa generalconceptof
security@icy, such that allowed
policiesincludemulti-levelsecurity
(MIS),capabilitypassing,confinement,
comparbnentation,discretionaryaccess,
multi-user]multikey access,automatic
distributionand authorizationchains,
and downgrading.

- It does without the notionof “trusted

processes.”l

- It providesa formalismfor the
specificationof securitypolicies.

1A “trusted process“ is generallytakento be a
subsystemthat is permittedto violatesaneglobal
securitypolicy,usuallyMLS. However,it seemsto
us unnecessarilydangerousto adnitsubsystemsthat
are permittedto performarbitraryactionsupon
systemresources;rather,one shouldstateprecise
policiesfor the interactionof thesesubsystems
with the wholesystcsn,ah thenverifythatthose
p31iciesare satisfied.

CHi753-3/82/0000/0011$00.75@1982IEEE 11

- It supportsa rigoroustreatmentof
intransitiveinformationflow.

- It providestechniquesfor provingthata
givensystemsatisfiesa givenpolicy.

- It supportsuse of a hierarchyof models
at variouslevelsof detail,thusmakirq
it easierto provesecuritypropertiesby
factoringthe difficulties,and by
lettingthemappearat theirproperlevel
of abstraction.

However,our approachdoes not addressthe problens
of user authentication,of securitybreaches
arisingthrowghinference,eitherlogicalor
statistical,of unauthorizedinformationfrom
informationwhich is authorized(theso-called
aggregationproblem),or of fault-tolerantsecure
computing.

lhe literatureon computersecurityprovidesmany
different“securitymodels,”withoutsayingwhat a
securitymodel actuallyis. We proposeto
distinguishsharplybetweena securitypolicy,
whichdefinesthe securityrequirementsfor a given
system,and the systemitself,whichmay be
representedby a model,for example,a high level
specificationor an abstractmachinedescriptionof
what the systemdoes2. In general,security
policiesare very simple,and shouldbe easyto
state in an appropriateformalism.We providea
very simplerequirementlanguagefor statirq
securitypolicies,basedon the conceptof
noninterference,*ere

one groupof users,usinga certain

%l%:z%&%%%%%%
the firstgroupdoes with those
conmandshas no effecton what the
secondgroupof userscan see.

In thisapproach,securityverificationconsistsof
showingthata givenpolicyi.+satisfiedby a given
model. Takingthis abstractview considerably
simplifiesmany aspectsof the problem.

2Eventhoughsuch a mcdeldescribeshow some
systemintendsto achievesesurity,it probably
shouldnot be calleda “securitymodel”unlessit
has been provedto satisfysome securitypolicy;in
particular,we shouldalso be able to consider
modelsof insecuresyst-, in orderto be able to
exploretheirflaws.

Informationflowtechniquesattenptto analyzewhat
users (orprocesses,or variables)can potentially
interferewith others,whereaswe beginoppositely,
bysayirg what users (orprocesses,or variables)
must not interferewith othersin orderthat sane
secur~ policyhold. Informationflowtechniques
generallyproceedto form the transitiveclosureof
a “potentiallyflows”relation,arxlthuserxlUp
with a largenumberof casesthat actuallycannot
occur,but nonethelessmust be analyzed. We hope
to avoidthisbog by usinga more refinedanalysis
basedon noninterferenceand containingexplicit
informationaboutthe operationsinvokedby users.

Our wrk was in part inspiredby the approachof
[Feiertag80] and [Feiertag,Levitt& Robinson

77]. Some differencesare thatwe are more
explicitand rigorousaboutour franeworkand
assumptions,we treatthe generaldyneanicalcase in
whichcapabilitiesmay be passedbetweenusers,and
we considerarbitrarysecuritypolicies,rather
than justMLS. Our approachis relatedto thatof
[Rushby81a]whichalso usesan autcmatonmcdel.

Differences are that [Rushby81a] onlyconsiders
the staticcase (nopassi~ of capabilities)of a
Plicy that separatesprocessesby permittingthem
to communicateonly throughspecifiedchannels.

The readerwho wantsmore backgroundinformationon
crnnputersecurityshouldconsult[Denning82], or
[Landwehr81], [Rushby81b]or [Turn81].

1.1 The Problenof DafinirqSecurity

The purpose of a so-called “sacuritymodel” is to
provide a basis for determining whether or not a
systen is secure,and if not, for detectingits
flaws. Most of the modelsgiven in the literature
are not mathematicallyrigorousenoughto support
meaningfuldeterminationsof the kind needed;sane
do not suppcrta sufficientlygeneralviewof
security(forexample,theymay fail to handle
breachesof securityby cooperatingmultiple
users);and some are restrictedto specifickinds
of system,or even to justone systen. These
modelsare oftenvery complex,and thusobscurethe
fundamentalintuitionwhich is usuallyvery simple.

Many of the most ccmplicatd securityproblems
arise in connectionwith so-calledcapability
systems;for example,the passingof capabilities
amonguserscan lead to situationsin which it is
difficultto determinewhetheror not securitycan
be violated. The rigorousmathematical
verificationof non-trivialsecuritypoliciesfor
such systemsseemsnot to have been previously
studied.

One assmption behindthispaper is that security~
is fundamentallya requiranentfor certainsystems
wherewe use the word “requirement”to referto

~he socialcontextof a system,ratherthan to some

3Althoqh we will often speakas if concerned
only with computersystems,in factour aproach,
includinggeneralpolicies,capabilitymcdel.s,and
verificationcan alsobe applieddirectlyto manual
or mixedmanual-cc+nputersystems,and our use of
the word “system”shouldbe understoodin this
sense.

pre-existingmathematicalmodel. hbst work in
ccmputersecurityhas ignoredthe socialcontexts
in whichsystemsare actuallyused. However,
differentorganizationshave differentsecurity
needs,ard use theirsystemsin differentways; in
general,theyhave differentsecuritypolicies.
Providinga modelwithoutunderstandingthe needs
of the ccanmunityinvolvedis unlikelyto yieldthe
most usefulresults. What is ultimatelynecessary
is that the actualcommunityof usersshouldbe
satisfiedthat the systemthey are usingis
sufficientlysecurein a sensewhich is appropriate
for theirparticularpurposes. Once the needsof a
ccinmunityhave been understood,it may be possible
to formalizethoseneedsad to model their
informationprocessingsystem;at thispoint it
will be meaningfulard usefulto provideproofs.
In this,we disagreewith [DeMillo,Lipton& Perlis
77],who seam to believethat the socialprocessin
itselfcan be adequatefor securityverification;
see [Dijkstra78] for relateddialectics.

Thusrwe envisiona fourstageapproach: first,
determinethe securityneedsof a givencommunity;
second,expressthoseneedsas a formal
requirement;third,model the systemwhichthat
ccmmunityis (orwill be) usimg;and last,verify
that thismodel satisfiesthe requirement.Only
the lastof thesesteps is purelymathematical,
althoughthe otherstepshavemathematicalaspects;
the remainderof thispa~r concentrateson such
aspects.

1.2The Problemof VerifyingSecurity

A greatdeal has been writtenaboutthe
verificationof allegedlysecuresystems. A basic
point is that it is necessaryto verifynot only
that somehigh leveldesignspecification,such as
mightbe implementedin PSC6 [Neumann,Eoyer,
Feiertag,Levitt& Robinson~], satisfiessome
security@icyt such as MLS, but one must also
verifythat the code for the systemactually
satisfiesthe designspecification.In particular,
it will be necessaryto checkat some levelthat
such featuresas interruptsand manorymaps are
handledcorrectly. It is here thatwork on
securitykernelsbecomesrelevant,as attemptsto
simplifytheseverificationproblems.

In general,work on securitykernelshas not
addressedissuesof securitypolicy. For exanple,
[Popek& Farber78] presentsan automato~like

model for a mechanismto enforceaccesscontrolin
theirkernel,but theydo not attemptto show that
it satisfiesany particularconstraintson the flow
of information.Rather,theyprovidesuggestions
on how to provethat some code satisfiestheir
model. Theirmcdel fallsunderour headingof
“dynamiccapabilitysystems,”becausetheyhave a
“pclicymanager”processwhichcan changethe
protectiondata of the system. Unfortunately,they
fail to stateany restrictionson thisprocess.

[Rushby81aldiscussesthe notionof a “separation
kernel,”which it seemsmightbe usefulfor
modellingand verifyingthe lowerlevelsof an
abstractmachinehierarchy,becauseit does permit
discussionof interrupta,memorymaps, etc.,and
also simplifiessystemstructureby postulating
separationand charnelcontrolpoliciesfor
componentprocesses.

12

1.3 Sane Highlightsof the Approach

In orderto treata sufficientlywide varietyof
systems,we need a ratherabstractnotionof
system. This papergivesa set theoreticmodel
which is a sortof generalizedautcmaton,calleda
“capabilitysystem.” It has an ordinarystate
machinecomponent,and also a capabilitymachine
conpnent whichkeepstrackof what actionsare
permittedto what users. Systemswhichdo not use
capabilitiescan be modelledwith thisnotion,
simplyby emittingthe capabilityccmponent.

We definewhat it means for one set of usersto be
‘noninterferirqwith”another;this formalizesthe
notionof informationnot flowingwhere it
shouldn’t,withoutassumingthat informationflow
is necessarilytransitive.We nextprovidea
generaldefinitionof ‘securitypolicy”and discuss
that it means for a givencapabilitysystemto
satisfya givensecuritypclicy,thusdefiningthe
securityverificationproblen. Finally,we suggest
somemethcdsfor actuallycarryimgout such
verifications.

Recent work on abstractdata typessuggeststhat it
may be unnecessaryand evenharmfulto separatea
data structurefromthe commandswhichcreate,
access,and modifyit [Gcguen,Thatcher& Wagner
78, Guttag75]. Furthermore,experiencewith
applicationssuggeststhat it is necessaryto take
accountof lessconventionalcomnands,for example,
commandsthat “execute”data,or that “summarize”
it statistically.For this reason,we consid,er
“abilities,”whichare simplysetsof commands.

1.4Acknowledgements

We would very much like to thank PeterNewnann,
Karl Levitt,Rob Shostak,amd Rich Feiertagfor
theirvaluablecomnentson thiswork as it has
evolvedthroughseveraldraftsand lectures. We
also thankDorothyDennirxg,Carl Landwehr,Roger
Schell,Ken Shotting,and Gene Wiatrowskifor their
valuablecomments.

2 SecurityModels

This section presents our technique for modelli~
securesystens,usingstandardstructuresfrom
automatontheoryin a way that incorporates
capabilities.

2.1 StaticSystens

We first discussthe classiccase in whichwhat
usersare permittedto do does not changeover
time. We may assnnethatall the informationabout
what usersare permittd to do is ncodedin a

$simgleabstract“capabilitytable”.

40f course,in an actualimplementation,this
informationmay be distributedanonga numberof
tables and algoriths. Exactly how this is done
does not concern us in this model; we only need an
abstract summary of what is permitted ard what is
not. In this respect,our “capabilitytables”are
much like the “accessmatrices”of [Lampson74].
Thus,our abstractcapabilitiesshouldbe carefully
distinguishedfrom “concretecapabilities,”tiich
mightbe, for example,very longmachinewordsused
to actuallyimplementabstractcapabilities.

13

The systemwill alsohave informationwhich is not
concernedwithwhat is permitted;thiswill incltie
users’programs,data,messages,etc. we will call
a ccmpletecharacterizationof all such information
a stateof the systen,and we let S denotethe set
of all suchstates. The systenwill provide
comnandsthatchangethesestates;theireffectcan
be describedby a function

do:sxuxc->s

whereC is the set of statechangingcommandsand U

is the set of users. It mightbe that if u is not
permittedto performa cmnd c, thendo(s,u,c)=
s; such securityrestrictionscan be implementedby
consultingthe capabilitytable,and are here
simplyasswnedto be builtintothe functiondo.

We will also assunethat for a givenstateand
user,we knowwhat output (ifany) is sent to that
user. ‘ibisaspectof the systemcan be described
by a function

Out: sxu->out,

wheretit is the set of all possibleout~w~w~~ig.,
screendisplaystates,listi!xp,etc.).
assunethat all informationgivento usersby the
systemis encodedin this function. (Presumably
userscan alsoget informationin otherways
outsidethe system,but we do not attemptto
describethat.) Note that the functionout may
alsoconsultthe capabilitytablein determinirq
itsvalue.

puttingall this together,and addingan initial
state,we get a simplifiedversionof our general
modelto ~ given later,which is justan ordinary
automaton A significantadvantageof havingour
modelbasedon a standardnotionlikethe automaton
is thatan extensiveliteratureand well developed
intuitionbecomeimmediatelyapplicableto our
problemdcmain.

Definition1: A statemachineM consistsof the
following: ‘—

A set U whoseelementsare called
“users.”

A set S whose elementsare called
“states.”

A set C whose elments are called“state
camnands.”

A set Out whoseelementsare called
“outputs.”

together with

%ote that there is no assumptionhere that any
of the sets involvedare finite. This convenient
fictionpermits,for example,the stateset S to
includea pushdownstore,and allowsthe storageof
arbitrarilylargeintegersand arbitrarilylong
characterstriqs.

- A functionout: S x U -> Out which “tells - A set CC whoseelementsare called
what a givenuser seeswhen themachine
is in a givenstate,”calledthe output
function.

-A functiondo: S x U x C -> S which
“tellshow statesare updatedby
Ccmmands,”calledthe statetransition
function.

- A constantsO, the,initialmachinestate,— .
an elementof S.

[1

The connectionwith the standardformof the
definitionof statemachineis to takeU x C to be
the set of inputs.

What we have called“users”couldalso be takento
be “subjectsWin the more generalway in whichthat
word is sometimesused in operatingsystemstheory.
Processescan be handledin thisway.

2.2 Capabilitysystems

In orderto handlethe dymuniccase, in whichWhat
usersare permittedto do can changewith time,we
will assunethat in additionto the statemachine
featuresthereare also “capabilitycommands”that
can changethe capabilitytable. The effectsof
suchcommandscan be describedby a function

cdo:Capt x U x (X -> Capt ,

where Capt is the set of all possiblecapability
tables,U is the set of all users,ad CC is the
setof capabilitycommands. (Ifa useru is not
allowedto performthe capabilitycommandc on the
tablet, then cdo(t,u,c)may be just t again;as
before,this is determinedby consultingthe
capabilitytable.) In orderto distinguish
capabilitycomnandsfromstatecomnards,in the
followirqwe will denotethe set of all state
comnandsby SC. so that the statetransitionsard
the outputscan be checkedfor securityagainstthe
capabilitytable,we will add a capabilitytable
ccmponentto the statetransitionfunctionand to
the outputfunction.

Adding all this to the definition of a state
machine, and also addirxgan initial capability
table, we get the following as our basic concept:

Definition2: A capabilitysystcrnM consistsof
the followimg:

A set U whoseelementsare called
“users.”

A set S whoseelementsare called
“states.”

A set SC whose elements are called “state
ccmmands.”

A set Out whoseelementsare called
“outputs.”

A set Capt whose elementsare called
“capabilitytables.”

“capabilityccmmards.”

togetherwith

A functionout: S x Capt x U -> Out which
“tellswhat a given user seeswhen the
machine,includingitscapability
component,is in a givenstate,”called
the outputfunction.

Afunction do: SxcaptxU xX->S
which “tellshow statesare updatedby
ccm’matis,”calledthe statetransition.—
function.

A functioncdo:Capt x U x CC -> Capt
which “tellshcw capabilitytablesare
updated,”calledthe capabilitytranstion
function.

- ConstantstO and sO, the “initial
capabilitytable”and the “initial
machinestate,”respectivelyelementsof
Capt and of S.

[1

For conveniencein the followinq,let C = CC U SC.
the set of all commands. ‘“

As we have formulatedcapabilitysystems,there
no commandsthatchangeboth the stateand the
capabilitytable;however,if it is desird to
accc+nmdatesuchcommandsfor some application,
definitioncan be easilychangedto do so.

The capabilitycompnent of a capabilitysysta
itselfa statemachine,with stateset Capt and

are

our

is

inputset U x CC; it models the way in which the

capabilitytable is updated,and includessuch
possibilitiesas passingand creatingcapabilities.
We will call it the capabilitysub-machineof the
capabilitysystem. The entire=~~systen is
a cascadecomection (inthe senseof automaton
theory,e.g.what is called“serialconnection”
in [Hartmanis& Stearns66])of thismachinewith
anotherthatmodelsthe processingof all the non-
capabilityinformation,such as user files. In the
following figure illustratiq this cascade
connection, the function Check returns the
information from the capability table needed to
determine whether or not a given cornnand is
authorized for a given user.

Let us call a subsetof C = SC U CC an ability, ati
let Ab denote the set of all such subsets. Then it
wuld make sense, for example, to let Capt = [U ->
Ah], the set of all functions from U to Ab, so that
a capability table wuld tell us exactly what
abilityeach useractuallyhas. However,our
abstractmodeldoes not requireany such particular
representation. We will discuss later on some

Figure 1: CascadeConnectIon

particularmodelswhich use representationslike
this to implementspecificsecuritypolicies.

Givena capabilitysystemM, we can definea system
transitionfunctionwhichdescribesthe effectof
~&unar& on”the cambind systemstatespace,*ich
is S x Capt. This function

csdo:SxCaptx UxC->S xcapt

is defined,for s in S, t in Capt and u in U by

csdo(s,t,u,c)= (do(s,t,u,c),t)ifc is inSC

and

Csdo(s,t,u,c) = (s,cdo(t,u,c))if c is inCC.

We can now view a capabilitysystemas a state
machine,with statespaceS x Capt, inputspace (U
x C) and outputspaceOut. We can thereforeextend
the systemtransitionfunctionin the classicalway
to stringsof inputs,by defining

Csdo:Sxcapt x (uxc)*->sxcapt

with the equations

csdo(s,t,NIL)= (s,t)

and

csdo(s,t,w.(u,c))= csdo(csdo(s,t,w),u,c)

for s inS, t inCapt, u inU, c inC, amiiw in (U
x C)*, whereNIL denotesthe anptystringand the
“dot”denotesstringconcatenation.we will USS
the notation

[[w]] = Csdo(to,co,w)

for the “denotation”or effectof the inputstring
w on states,startingfromthe initialstateof the
wholesystem.

We now recallone more conceptfrom classical
automatontheory,and then specializeit to the
case at hand. A states of a statemachineM is
reachableiff there is somew in C* such that
[[w]] = s. But noticethat the set of reachable
statesof a capabilitysystemwill not in general
be a Cartesianproductof a set of (ordinary)
statesand a set of capabilitytables. However,
the set of reachablestateswill alwaysbe the
stateset of a reachablesubmachine,the reachable
capabilitysubsysta of the given capability
system.

3 SecurityPolicies

&at one groupof usersdoes usinga
certainabilityhas no effecton what
Some othergroupof userssees.

Section3.1 firstdiscussesstaticsecurity
policies,whichgive a set of noninterference
assertionsthat are to hold independentlyof any
changesin the capabilitytable. Afterthat,
Section3.1 considersdynanicsecuritypolicies,
whose noninterferenceassetionsmay take accountof
the stateof the capabilitytable. It shouldbe
notadthatone may wish to imposestaticsecurity
policies(suchas MLS) even for systemswhere
capabilitiesmay be passed,arxlthat it is possible
to considerbth staticand dynamicpoliciesfor a
sirqlesystem.

3.1 StaticPoliciffi

Let us beginwith some auxiliarynotation. Givena
statemachineM, let w be an elementof (Ux C)*
and let u be a user. We define [[w]]u to be the
“outputto u afterdoingw on M,” i.e.,

[[wllu=out([[wll,u) .

It is the “denotationof w fromthe pointof view
of user u.” Note thatM may have additional
structureas a capabilitysystem. In thatcase,
the statespacehas the formS x Capt,the set C of
conmandsis a disjointunionCC U SC of stateand
capabilitytablechangi~ commands,and the state
transitionfunctionis csdo. TTXJ.S,all the general
definitionsgivenbelowalso applyto capability
systems. However,it is simplerto statethem for
a arbitrarystatetransitionsystem.

Our secondauxiliarynotationhas to do with the
selectionof subsequencesof user-commandpairs.

Definition3: Let G C U be a “group”of users,
let A ~C be an ability,and let wbe in (Ux C)*.
Thenye let l%(w)denote the subsequenceof w
obtainedby e iminatingthosepairs (u,c)with u in
G. Similarly,we let PA(w)denotethe subsequence
of w obtainedby eliminatingthosepairs (u,c)with
c in A. Combiningthesetm, we let PG A(w) denote
the subsequenceof w obtainedby eliml~atimgthe
pairs (u,c) with u in G and c in A. []

For exanple,if G = {u,v}and A = {c1,c2},then

~,A((u’,cl)(u,c3)(u,c2)(v’,c1)) =

= (U’,C1)(U,C3)(V’,C1),

whereu’,v’are otherusersand C3 is another
command.

Nowwe are readyfor the basictechnicalconceptof
noninterference,tiichwe give in threedifferent
forms (wewill latergeneralizeall this to
conditionalnoninterference).

Whereasthe previoussectionpresentedour approach
to nmdellingsecuresystems,this sectionpresents
our approachto definingsecuritypolicies. The
purpse of a securitypolicyis to declarewhich
informationflowsare not to be permitted. Giving
such a securitypolicycan be reducedto givinga
set of noninterferenceassertions.Each
noninterferenceassertionsays that

15

Definition4: Givena statemachineM and setsG,
G’ of users,we say thatG does not interferewith
(or is non-interferingwith~,~ltten G :Im
iff for~l w in (U x C)* and all u inG’,

[[WIIU= [[pG(w) IIu ●

Similarly,givenan abilityA and a groupG of
users,we say thatA does not interferewithG,——
writtenA :1 G, iff for.allwln (Uxc)=ii u in
G,

[[w]]u= [[PA(W) IIu .

More generally,users inG with abilityAdo not
interferewith usersin G’ writtenA,G :1~~
for all w ~U~* and u in G,

[[w IIu= [[PG,A(W)IIu .

[1

Althoughwe have statedthesedefinitionsfor state
machines,theyapply immediatelyto capability
systemsbecausewe have shownthatcapbility
systemsare also statemachines. In the following
we will generallybe applyingthesedefinitionsto
the caseof dynamicallychangingcapabilitiesas
coveredby capabilitysystems.

Example1: It followsfrcmthe abovedefinition
that if A :1 {u),then the commendsin A have no
effectwhatsoeveron the outputseenby u. For
exanple,if A is the abilityto create,write,
modifyor deletea file F, then “A noninterfering
with u“ meansthat the informationread frcmF by u
cannotbe changedby any commandsin A. In
particular,if F did not originallyexist,then u
will alwaysbe told that F doesn’texist,
independentlyof what commandsin A may actually
have done. []

Noticethat neitherthe “noninterferingwith”
relation,nor its complementrelation,“potentially
interferingwith,”are assunedto be transitive.
Thismeans thatwe are able to considerthe fully
generalcase of intransitiveinformationflow.

This conceptof noninterferingis similarto
conceptsgiven in [Feiertag,Levitt& Robinson77]
and [Feiertag80], in that both considerisolating
the effectsof sequencesof commatis;however,the
conceptcapturedhere is more general,as we can
treatarbitrarypclicies(notjustMLS) and our
capabilitymachineapproachallowsus to treat
dynamicallychangingcapabilitytables.

We are now readyfor the major conceptof the
paper.

Definition5: A securit lic is a set of
‘vnoninterferenceassertions.

This definitionseemsto b fullygeneralfor
statingrestrictions,or the lackof restrictions,
on informationflow,once the generalizationto
conditionalnoninterferencehas beengiven. In
particular,it can handledowngrading,multi-
user/multi-keyaccess,canpartmentation,and
channelcontrol;it can easilyand naturally

describesituationswherepassinginformation
acrossboundariesis permitted,for examplewhen
informationis declassifi~,or when it is
controlledby discretionaryaccess.

Example2: MultilevelSecurity. Let L be a simply
orderedset of “securitylevels,”such as
{unclassified,secret,top-secret],with ordering
relations,as in [Bell& LePadula74]. Assume
thatwe are givena functionLevel:U -> L. We now
need abit more notation. Forx inL, let

U[-OO,X]= { u inU I Level(u)sx }

u[x,+=]={ uinU I Level(u)~x}

wherewe do not assumethatthereactuallyare
minimunand~imun elements(-wand w) in L. Then
a capabilitysystemM is multilevelsecurewith
respectto the givenlevelfunction-or all x
> x’ in L, the noninterferenceassertion

U[X,+=J]:1 U[--,x’l

holds for M.

The functionLevelmightbe storedin the
capabilityccmponentof the system,and it is not
assunedto be necessarilyconstant. Or the —
capabilitycomponentmightbe much more complex,
containinginformationon who is allowedto change
classifications,or to passcapabilitiesto change
classifications.This will be discussedbelow.

Let us call a groupG of usersinvisible(relative
to otherusers)iffG :1 ~ (“invisible”seems
appropriatefor theseusersbecausetheycan see
withoutbeingseen). It is very easy to express
-MISusirqthisnotion:

for everylevelx, U[x,+~]is invisible.

MLS easilygeneralizesto a partiallyorderedset L
of securitylevels,justby replacing“x > x’” by
‘x is not < X1.” ThisgeneralizationpermitsME
to enccmpa=scompartments:if c is a levelsuch
that for all x in L, neitherx > c nor c > x, then
c is completelyisolatedfromall otherlevels,and
the usersof levelc are a ‘ccrnpartment.$’It is
also easy to expressthisgeneralizationin terms
of invisibility:

fOr everylevelx, U - U[-,x] is invisible,

where “-”denotesset difference. []

Exmple 3: SecurityOfficer.Supposethat the set A
consistsof exactlythosecomnandsthatcan change
the capabilitytable,and supposethatour desired
policyis that there is just one designateduser,
“s.ecor”the SecurityOfficer,whoseuse of those
comnandswill have any effect. This ~licy is
simplyexpressedby the singlenoninterference
assertion

&-{seco} :1 u .

[1

16

Exauple4: Isolation.A groupG of users is
isolated(o~rated, or is a compartment)iff
~and -G :IG. ‘Iheisolationpolicysays that
nothingcan flow in or out Qf the groupG. A system

is completelyisolatedif everyuser is isolated.
This is a policythat [Rushby81a]wishesto prove
forhis separationkernels. [1

Example5: ChannelControl. A very generalnotion
of channelIS lusta set of comnarxis,i.e.,an
abilityA C O. Let G ad G’ be groupsof users.
Then the poiicysayingthatG andG’ can
communicate~ throughthe channelA is

-A,G :IG’ and-A,G’ :1 G .

(Thisis our formalizationofa conceptin [Rushby
81b]). []

Example6: InformationFlow. In orderto showhow
informationflowcan be~luded underour more
generalconceptof noninterference,let us suppose
thata, b, c and d are ‘processes,”and thatAII A2
and A3 are “charnels,”such that a, b, c, and d can
conrnunicateonly as indicatedin the figurebelow,
in which informationcan flowonly to the right

Figure2: An InformationFlow Diagram

The constraintsimpliedby thispictureincludethe
followingnoninterferenceassertions:

{b,c,d}:1 {a} -Al,{a] :! {b,c,d]
{c,d}:1 {b} -A2,{b] :1 {c}

{C} :1 {d} -A3r{b]:1 {d}
{d} :1 {C}

We will show in a futurepaperhow to formally
producea completeset of of noninterference
assertionsfroman informationflowdiagramlike
thatof Figure2. For the manent,let us note that
the leftgroupof assertionsare purely
topological,while the rightgroupencode
informationabut the specificabilitiesmentioned
in the graph. []

3.2 DynanicPolicies

Dynamicpolicies,i.e.,policieswhichdependon
the stateof the capabilityccmponentof a system,
can be handladusingconditionalnoninterference
assertions.For stat~l~, no conditioning
of the noninterferenceassertionsis needed,
becausethe assertionsare supposedto hold always.
8ut for dyrwnnicpolicies,whetheror not a given
user u can interferewith anotheruserv, by usirq
an operationc may varywith time. ‘he conditions
thatwe attachto noninterferenceassertionswill
be predicatesdefinedover the sequencesof
operationsused to reachthe currentstate. The
basicdefinitionfollows. It givesonly the
generalcase “mixed”noninterference,with both
usersand operationsinvolved. Furthermotivation
is providedwith Examples7 and 8 below.

Definition6: Let G and G’ be setsof users,let A
be a set of comnands,and let P be a predicate
definedover (Ux C)*. ThenG usingA is
noninterferirxjwithG’ underconditionP, written

G,A:l G’ifP.

iff for all u’ in G’ and for all w in (Ux C)*,

[[w]]u, = [[p(w)]]u, ,

wherep is definedby

P(J)=J,

where~ is the emptystring,and

p(ol...On)= o’1...n’n

where

o’i =\ if P(O’~...i’1)l)andoi= ‘“’a)

withuinGandainA ,

and

“i = oi otherwise.

-– c..- —1-.,—— —.-L - -–-—. _.. 2_z,-:L2-_ -<rne reason~or glvmg sucn a mqmex uer~nlclotlUI
the projectionfunctionp is to take accountof the
factthat theremay be some subsequencesin a long
sequenceof corrmandsthat are noninterferi~,while
othersmay be interfering.

The examplesbelowgive severalconditional
noninterferenceassertionsand showhow theyapply
to commandsequences.

Exsmple7: DiscretionaryAccess. In this ex~Ple,
we assmnethe existenceof a functionCHECK(W,U,C),
which looksat the capabilitytablein state [[w
]] to see whetheror not u is authorizedto do
comnandc; it returnstrue if he is, arxlfalseif
not. We can then regardCHECK(U,C)as a predicate
on cornnandsequencesw. One generalpolicythatwe
wish to enforcefor all usersu and all commarxlsc
is

(*) {u},{c}:1 u~not CHD2K(U,C),

17

whereU is the set of all users. This jUStSSYS
that u cannotinterfereusingc if he does not have
the capabilityto use C in that state.

NOW let us considerthe casewhere for eachuser u
and comnandc, thereis anothercomnand,denot~
pass(u,c),tiichsays to pass to u the abilityto
do c; of course,the user issuingthlsc_ndmaY
or may not be authorizedto do so. we need a bit

more notation. If w is a comnandsequenceof the
formw’.o, let previous(w)=w’.and let last(w)=
O. Then let us writec=(prevlo~~ufc) ‘or ‘ie
predicateCHECK(previous(w),u,c)of w: Now the
policythatwe wish to enforceregardinguse of the
pass ccmmandis

(**) {u},{c} :! U~[not gy(previo~tu~c)l

[ifCHiXK(previous,u’,pass(u,c))
then not last= (u’,psss(u,c))]

This says thatu usirgc camot interfereif in the
previousstatehe didn’thave the capabilityto use
C, UnleSSsome user u’ havingthe capabilityin the
previousstateto pass u the abilityto use c, in
factdid so.

The correspondingassertionfor the revocation
operation,whichwe shalldenoteunpass(u,c),is

{u},{c}:! U ifCHECK(previous,u’,unpass(u,c))—
and last= (u’,unpass(u,c))

This says that u can’t interfereusingc if in the
statepreviousto tryingto use c, some user U* who
had the capabilityto revokeu’s capabilityto use
c in factdid SO.

Let us see how Definition6 appliesto a particular
sequenceof commandsand the assertion(**). Let
us suPPosethat user u’ has capabilitytouse the
comnardpass(u,c),i.e.,that for all strirqsw of
ccmmands,

CHECK(w,u’,pass(u,c))= T

and

CHECK(w.(u’,pass(u,c)),u,c)= T .

Furthersup~se that u does not initiallyhave
capabilityfor c, and that (u’’,d)is
noninterferirqwith the capabilityof u to use c,
i.e.,

CHECK(NIL,U,C)= T

and for eachw,

CHECK(w.(u’’,d),u,c)= C~K(W,U,C) .

Then, for example,(**)says that for any userv,

[[(u,c)(u’,pass(u,c))(u’’,d)(u,c)]]v=

[[(u’,pass(u,c))(u’’,d)(u,c)]]v ,

i.e.,that the firstinstanceof (u,c)in the
comnandsequencehas no observableeffect. []

Example 8: Bailout-Function.We now expressa
dynamicpollcyhavingone functionthatdiffers
franstandardMIS; the purposeof thisex?anpleis

of courseto illustratethe use of our conditional
noninterferenceassertionformalism,ratherto
arguefor or againstany particularsecurity
plicy. In thisplicy, thereis a commandB that
when executedchangesthe lwel of the user to the
lowestsecuritylevelin an irrevocablemanner.
l’bus,we assumea simplyorderedset L of security
lwels, with bottomlevel“Uric”say,and with a
functionLevelfrom users to levels. Then the
policyis statd with the followingnoninterference
assertionsfor eachuser u

{u} :! U[-oo,Lwel(u))if CHECK(u,B),—

tiereU[~, x) = { u’ I Level(u’)< x }, and

U(Unc,*] :1 {u) if not CHECK(u,B),.

whereU(Unc,+=]= { u’ I Level(u’)>Unc } ,
assumingthe followingaboutthe functionCHIXK,
for everysequencewof comnanflsruser u, and
operationor

CHFZK(W.O,U,B) = CHECK(W,U,B)if not o=(u,B)—

CHECK(W.(U,B),U,B)= false ,

arxl

CHECK(j,u,B)= true .

3.3 SecurityPolicyDefinitionLanguage

Our definitionof security~licy suggeststhata
specializedrequirementlanguagecan be given for
statingsecuritypolicies,such that the basic
statments of this languageare noninterference
assertions.Noticethat each such assertioncan be
seenas an infiniteset of equalitiesof sequences
of commands;this set can also be expressedas one
equationhavingone secondorderquantifierover
ccmmandsequences.We believethat the very simple
formthattheseassertionshave will permitus to
constructa specialpurposeverificationtool,
ratherlike the MLS toolof [Feiertag80], but
applicableto any policythat can be formulatedin
the larguage. Two steps in the operationof such a
toolare to eliminateall explicitinduction,and
then to translateintothe simplerlogical
formalismof a mechanicaltheoremprover. We hope
to discussthis in futurework.

4 LessAbstract Models of CapabilitySystems

Specificsystems,such as PSC6,can be modelledin
our franework,by instantiatingthe varioussets
and functionsinvolvd in Definition2. This can
be done in many differentspecificationformalisms,
includingthe statemachineapproachof SPECIAL
[Levitt,Robinson& Silverberg79]; the first

orderlogicdecisionprocedureapproachof STP
[Shostak,Schwartz&Nelliar-gnith81];the

inductivedefinitionover listsand numbers
approachof [Boyer& Moore80]; the parameterized
procedureapproachof CLEbR [Burstall& Goguen77]
or in a more usableform,ORDINARY[Goguen&
Burstall80]; and the executableabstractdata
type/rewriteruleapproachof WJ [Goguen& Tardo
79].

18

Anotherpossibilityis the formalismsurveyedin
[Snyder811, one of the fewwhichconsidersthe

passingof capabilities.We observethatthis is a

l(reowsk~=en & Winkowski 78]g?n%~%y,
graphgramnarformalismin the

it seemsto be difficultto verify~licies in this
formalism.

5 VerificationofSecurityPolicies

How can we verifythat a securitypolicyP is
satisfiedby a capabilitysystemM? For exanple,
how can we verifythatMLS has been correctly
implementedin someversionof PSC6? Fran a
generalpcintof view, this is a matterof
verifyingthat the noninterferenceassertionsin
the policyare trueof some particularabstract
machine. This can be done by inductionover the
commandsof the system. We have some hope that a
greatdeal can be accomplishedwith purely
syntacticcheckimgof specificationsfor the
operatingsystem,as with the FeiertagMIS tool
[Feiertag80],becauseof the simpleformof the

assertionsoccurringin the securitypolicy
definitions.Moredetaileddiscussionof thiswill
be the subjectof a futurereprt.

But, you may ask, how can we verifythatsomegiven
code runningon a givenmachineactuallysatisfies
some policy? One approachis just to verifythe
~licy for a high levelspecification,and thento
verifythat a lowerlevelmachinecorrectly
implementsthe specification,perhapsthrougha
sequenceof intermediateabstractmachines;this is
essentiallythe approachof HIM [Levitt,Robinson
Silverberg79].

6 Sumnary

This paperhas describedan approachto security
which

1.

2.

3.

is basedon:

Modellingthe informationprocessing
systemby an automatonof the formthat
we call a capabilitysystem.

Oefiningsecuritypoliciesas setsof
noninterferenceassertions.

Verifyirqthat a given systemsatisfies
a givenpolicy.

6Thisobservationseemsto be new, and mightbe
of some use for the furtherdevelopmentof the
formalismdescribedin [Snyder81],becauseof the
existenceof a considerablebodyof resultson
graphgrammars,includingpumpimglemmas,
decidabilityresults,and normalforms.

&

[Bell& LaPadula74]
Bell,D. E. and LaPadularL. J.
Secure ComputerSystems:

MathematicalFoundationsand—
Model.

Tec~l Report,MITRECorporation,
1974.

Bedford,MA.

[Bover& Moore801

[Burstall&

Boyer,R. and Moore,J. S.
A Computationals.
AcademicPress,1980.

Goguen 77]
“Burstall,R. M. and Gcguen,J. A.
~tting Theoriestogetherto Make

Specifications.
Proceedings,FifthInternational

JointConferenceon Artificial.—
Intelligence5:10~-1058,1977.

[DeMillo,Lipton&Perlis 77]
DeMillorR. A., Lipton,R. J. and
Perlis,A. J.
SocialProcessesand Proofsof

Theoremsand Prcwrams.

[Denning82]

[Dijkstra78]

In Proceedings,Fou~thACM Symposium.— —

firguages,F%= ~CM,
on Principlesof Pr ramming

1977.

Oennhxj,D.
CryptographyandData Security..—
Addison-Wesley,1982.

Dijkstra,E. W.
On a PoliticalPamphletfromthe

MiddleAges.
SoftwareEngineeringNotes 3(2):14-

16, 1978.

[Ehrig,Kreowski,Rosen&Winkowski 78]
Ehrig,E., Kreowski,H.-J.,Rosenr
B. K. and Winkowski,J.
DerivingStructuresfromStructures.
In Proceedings,Mathematical

Foundationso~~omputerScience,
. Springer-~rlag,Zakopane,
Poland,1978.

Also appearedas technicalre~rt
RC7046fromIBM WatsonResearch
Center,CanputerSciencesDept.

[Feiertag80] Feiertag,R.
~ Techniquefor Provinq

Specifica~ns are Multilevel——
Secure.

Tee= Report,SRI ReportCSL-
109, 1980;

[FeiertagrLevitt& Robinson77]
Feiertag,R. J., LevittrK. N. and
Robinson,L.
ProvimgMultilevelSecurityof a

SystenDesign.
In Proceedimgs~SixthACM Symposium

g%%%% %?inciples’

19

[Goguen& Burstall80]
Goguen,J. A. and Burstall,R. M.
An OrdinaryDesign.
~chnical R+art, SRI Intermtional,

1980.
Draftreport.

lGoguen& Tardo79]
Goguen,J. A. and Tardo,J.
An Introductionto OBJ: A Language

forWritingand TestirgSoftware
Specifications.

In S-w ificationof Reliable
Software,page=170-189. , 1979.

[Goguen,Thatcher&Wagner 781
Goguen,J. A., Thatcher,J. W. and
Wagner,E.
An InitialAlgebraApproachto the

Specification,Correctnessand
Implementationof AbstractData
Types.

In R. Yeh (editor),CurrentTrends

g:- w~ .
Originallypublishedas IBM T. J.

WatsonResearchCenterReportRC
6487,October1976.

[Guttag75] Guttag,J. V.
The Specificationand Applicationto

=tract Data —

PhD thesis,Universityof Toronto,
1975.

CcmputerScienceDepartment,Report
CSRG-59.

[Bartmanis& Stearns661
Hartmanis,J. and Stearns,R. E.
AlgebraicStructureTheoryof

SequentialMachines.
Prentice-Hall,1966.

[Lampson74] Lampson,B. W.
Protection.
OperatingSystemsReview8(l):18-24,

1974.

rLandwehr811 Landwehr,C. E...
A Survey”ofFormalModelsfor

computzmt~ —
TechnicalRerxrt,NavalResearch

Laborator~,1981.
NRLReprt 8489.

[Levitt,Robinson& Silverberg79]
LevittrK., Robinson,L. and
Silverberq,B.

[Neunann,l?oyer,Feiertag,Levitt&Robinson 801
Neunann,P. G., Boyer,R.S.,
Feiertag,R.S.,Levitt,K. N. ad
Robinson,R.S.
~Provably SecureOperatinqSYstem:

%%%!j%%ApplicatiO”’ m
Tee= Report,tiI International,

ComputerScienceLaboratory,
1980.

rpowk & Farber781. .

[Rushby81a]

[RUShby 81b]

Popek,G. J. and Farber,DavidA.
Ahkxlelfor Verificationof Data

Securityin OperatingSystems.
Communicationsof ~.Association

%3?%%%;-

Rushby,J. M.
Proof?f.Se~rability:A

Verlflcat~onTechni;e for a~—-
Classof SecurityKernels.

Tec=l=epcrt, Computing
Laboratory,Universityof
Newcastle-upon”fine,i9B1.

Rushby,J. M.
Verification<Secure Sy~tems.
TechnicalReport,Universltyof

Newcastleupn Tyne, 1981.

[Shostak,Schwartz&Melliar-%ith 81]
Shostak,Schwartz& Melliar-Smith.
STP:A Mechanized~ for——

SpecificationandVer=cation.
TechnicalRepcrt,~mputer Science

Lab,SRI International,1981.

[Snyder81] Snyder,L.
FormalModelsof Capability-Based

Protectionsystems.
IEEETransactionson CcmputersC-

30(3):172-181,=81.

[Turn81] Turn,Rein.
Advancesin ComputerSystem

Securi@.
ArtechHouse,1981.

The HDY H;ndbcok.—-
TechnlcalReport,SRI,

International,ComputerScience
Lab, 1979.

VolunesI, 11, III.

20

