Softwaretechnik
Model Driven Architecture
Introduction — OCL

Prof. Dr. Peter Thiemann

Universitat Freiburg

11.07.2008

Introduction MDA

Material

@ Thomas Stahl, Markus Voélter. Model-Driven Software
Development. Wiley & Sons. 2006.

SEARCH INSIDE!™

]
Model-Driven
Software
Development

@ Anneke Kleppe, Jos Warmer. MDA Explained: The Model
Driven Architecture: Practice and Promise. Pearson. 2003.

@ Stephen J. Mellor, Axel Uhl, Kendall Scott, Dirk Weise.
MDA Distilled: Solving the Integration Problem with the
Model Driven Architecture. Pearson. 2004.

What is MDA?

@ MDA = Model Driven Architecture
e also: MD (Software/Application) Development, Model
Based [Development/Management/Programming]
e Model Driven Engineering, Model Integrated Computing
@ Initiative of the OMG (trade mark)
o Object Management Group: CORBA, UML, ...
e open consortium of companies (ca. 800 Firmen)
@ Goal: Improvement of software development process
o Interoperability
o Portability
@ Approach: Shift development process from code-centric to
model-centric

@ Reuse of models
e Transformation of models
e Code generation from models

Goals of MDA

Higher Degree of Abstraction

Portability and Reusability

@ Development abstracts from target platform
@ Technology mapping in reusable transformations
@ New technology = new transformation

Interoperability

@ Systems span several platforms
@ Information flow between platforms via bridges
@ Byproduct of model transformations

Goals of MDA

Models and Model Transformations

Productivity

Every development phase directly contributes to the product,
not just the implementation

Documentation and Maintenance

@ Changes throught changes of the models
@ Models are documentation = consistency
@ Separation of concern

@ Better handle on changing technology

Specialization

@ Business processes
@ Technologies

The Concept “Model”

(after Herbert Stachowiak, 1973)

Representation

A model is a representation of an original object.

Abstraction
A model need not encompass all features of the original object.

Pragmatism
A model is always goal-oriented.

The Concept “Model”

(after Herbert Stachowiak, 1973)

Representation

A model is a representation of an original object.

Abstraction
A model need not encompass all features of the original object.

Pragmatism
A model is always goal-oriented.

@ Modeling creates a representation that only encompasses
the relevant features for a particular purpose.

Formal Models

Models authored in a formal language

@ Textual: defined by grammar, BNF, etc
@ Grafical: defined by Metamodel

e Which modeling elements?
@ Which combinations?
@ Which modifications?

Models with a formal semantics

@ Example: logical formula = truth value
@ Example: context-free grammar =- language
@ Example: program = programm execution

Models in MDA

Fachliche @ Y-~ —~—~--—--— PIM (Platform Independent Model)
Spezifikation

———————— Model-to—model transformation

CORBA- J2EE~- XML~ - PSM (Platform Specific Model)
Modell Modell Modell
\L \L \L “““ Model-to—code transformation
2EE/, - XML-
CORBA/C++- J Co{iiva Code — Implementation
Code

Models in MDA/2

PIM vs PSM

@ Relative concepts

@ Smooth transition

@ Several levels of model and transformation steps possible
@ Inverse transformation PSM =- PIM unlikely

Transformation

@ Code is the ultimate model (PSM)
@ Model-to-code is a special case

Models and Transformations

PIM
[psm | PSM
(Components) (WLS 8.2)
PS—M Code
(EJB 2.0) (Java / XML)
I .

Platform

@ API

@ Virtual machine

@ Provides several services

@ Examples

Different processors = hardware platform
Operating system = software platform
Java VM = software platform

EJB = component platform

CORBA, Webservices, ...
Application architecture, DSL (Domain Specific Language)

Examples for Platforms

Assembly
Code

Assembler

Machine Code
1960s

High Level
Language
Sour ce Code

None

Sour ce Code
Compiler

Assembly Code
1980s

Executable
Models

Hardware
Plattform

Model
Compiler

Sour ce Code
2000s

Software
Plattform

OCL

What is OCL?

@ OCL = object constraint language
@ standard query language of UML 2
@ expressions and constraints in object modeling artifacts

OCL/Expressions and Constraints

@ Expressions
o initial values, derived values
e parameter values
e body of operation (no side effects = limited to queries)
o of type: Real, Integer, String, Boolean, or model type
@ Constraints restrict the set of admissible instances
e invariant (class): condition on the state of the class’s
objects which is always true
e precondition (operation): indicates applicability
e postcondition (operation): must hold after operation if
precondition was met
e guard (transition): indicates applicability

@ Evaluation with respect to a snapshot of the instance graph

OCL/Context

@ Each OCL expression is interpreted relative to a context
e invariant: class, interface, datatype, component (a
classifier)
e precondition, postcondition: operation
@ guard: transition
@ Context is indicated

e graphically by attachment as a note
o textually using the context syntax

OCL/Example

TeamMember

name : String
age : Integer

2.% meetings

Meeting

participants

%

title : String
numParticipants : Integer
start : Date

duration: Time

Location

name : String

move(newStart : Date)

OCL/Example

TeamMember

name : String
age : Integer

2.% meetings

Meeting

participants

%

title : String

Location

numParticipants : Integer
start : Date
duration: Time

move(newStart : Date)

@ context TeamMember inv: age => 18

@ context Meeting inv: duration > 0

name : String

OCL/Invariants

@ Expressions of type Boolean

@ Interpreted in 3-valued logic (true, false, undefined)
@ Arithmetic/ logic expressions with usual operators

@ Attributes of the context object directly accessible

@ Alternatively through self. (attributeName)

@ Other values available through navigation

OCL/Navigation

@ Navigation traverses associations from one classifier to
another
@ Dot notation (object) . (associationEnd) yields
e associated object (or undefined), if upper bound of
multiplicity < 1
o the ordered set of associated objects, if association is
{ordered}
e the set of associated objects, otherwise
@ If association end not named, use
(object).(classNameOfOtherEnd)

OCL/Navigation/Examples

TeamMember Meeting Location
2.7% meetings *
name : String — 8 title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context Meeting

@ self.location yields the associated object
@ self.participants yields set of participants

OCL/More Navigation

@ If navigation yields object, then continue with
e attribute notation
e navigation
e operation calls

OCL/More Navigation

@ If navigation yields object, then continue with

e attribute notation

e navigation

e operation calls
@ [f navigation yields a collection, then continue with a

collection operation (collOp):

e notation (collection)->(collOp) ({args))

o examples: size (), isEmpty (), notEmpty (), ...
@ Single objects may also be used as collections

@ Attributes, operations, and navigation of elements not
directly accessible

OCL/More Navigation/Examples

TeamMember Meeting Location
. 2.7% meetings | | . * .
name : String title : String name : String
age : Integer | Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context Meeting
@ inv: self.participants—->size() =
numParticipants
@ context Location
@ inv: name="Lobby" implies
meeting->isEmpty ()

OCL/Accessing Collection Elements

@ Task: Continue navigation from a collection
@ The collect operation

@ (collection)->collect ((expression))
@ (collection)->collect(v | (expression))
@ (collection)->collect(v : (Type) | (expression))

evaluates (expression) for each element of
(collection) (as context, optionally named)

@ Result is a bag (unordered with repeated elements); same
size as original (collection)

@ Change to a set using operation —>asSet ()

OCL/Accessing Collection Elements

@ Task: Continue navigation from a collection
@ The collect operation

@ (collection)->collect ((expression))
@ (collection)->collect(v | (expression))
@ (collection)->collect(v : (Type) | (expression))

evaluates (expression) for each element of
(collection) (as context, optionally named)

@ Result is a bag (unordered with repeated elements); same
size as original (collection)

@ Change to a set using operation —>asSet ()
@ Shorthands
o (col).(attribute) for
(col)->collect ((attribute))
@ (col).(op) ({args)) for (col)->collect ({op)
({(args)))

OCL/Accessing Collection Elements

TeamMember Meeting Location
. 2.7% meetings | . . * .
name : String title : String name : String
age : Integer | Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context TeamMember

@ inv: meetings.start =
meetings.start->asSet () ->asBag ()

OCL/lterator Expressions

@ Task:
e Examine a collection
@ Define a subcollection

@ Tool: the iterate expression
(coll)->iterate ((it); (res) = (init) | (expr))
@ Value:
(Set {})->iterate
((it) ; (res) = (init) | (expr))

= (init)

(Set {x1, ...})—->iterate
((it) ; (res) = (init) | (expr))
= (Set {...})—->iterate

((it)
; (res) = (expr)[(it) = x1, (res) = (init)]
| (expr))

OCL/lterator Expressions/Predefined

exists there is one element that makes (body) true
(source)—>exists ((it) | (body)) =
(source)->iterate ({(it);r=false | r or (body))
forall all elements make (body) true
(source)->forAll ({(it) | (body)) =
(source)->iterate ({(it);r=true | r and (body))
select subset where (body) is true
(source)->select ({(it) | (body)) =
(source)->iterate ({(it);r=Set{}|
if (body)
then r->including ({it))
else r
endif)

OCL/lterator Expressions/Predefined/2

@ Shorthand with implicit variable binding
(source)->select ((body))
@ Further iterator expressions

@ On Collection: exists, forAll, isUnique, any, one,
collect

@ On Set, Bag, Sequence: select, reject,
collectNested, sortedBy

OCL/lterator Expressions/Examples

TeamMember Meeting Location
. 2.% meetings | . * .
name : String title : String name : String
age : Integer | Participants * | numParticipants : Integer 1
start : Date
duration: Time

move(newStart : Date)

context TeamMember
inv: meetings->forAll (ml
| meetings->forAll (m2
| ml<>m2 implies disjoint (ml, m2)))
def: disjoint (ml : Meeting, m2 : Meeting) : Boolean =
(ml.start + ml.duration <= m2.start) or
(m2.start + m2.duration <= ml.start)

@ def: extends TeamMember by «OclHelper» operation

OCL/OclAny, OclVoid, Model Elements

@ OclAny is supertype of types from the UML model and all
primitive types (not of collection types)
@ Oclvoid is subtype of every type
@ single instance OclUndefined
e any operation applied to OclUndefined Yyields
OclUndefined (except oclIsUndefined())
@ OclModelElement enumeration with a literal for each
element in the UML model

@ OclType enumeration with a literal for each classifier in
the UML model

@ OclsState enumeration with a literal for each state in the
UML model

OCL/Operations on OclAny

= (obj : OclAny) : Boolean

<> (obj : OclAny) : Boolean

oclIsNew() : Boolean

oclIsUndefined() : Boolean

oclAsType (typeName : OclType) : T
oclIsTypeOf (typeName : OclType) : Boolean
oclIsKindOf (typeName : OclType) : Boolean

oclIsInState (stateName : OclState)
Boolean

allInstances () : Set (T) must be appliedto a
classifier with finitely many instances

= and <> also available on 0c1ModelElement, OclType,
and OclState

OCL/Operations on OclAny/Examples

TeamMember Meeting Location
2..% meetings *
name : String — 8 title : String name : String
age : Integer |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

context Meeting inv:
title = "general assembly" implies
numParticipants = TeamMember.alllInstances()->size()

OCL/Pre- and Postconditions

Specification of operations by

context (Type)::(operation) ({(paraml) : (Typel), ...):
pre (parameterOk): paraml > self.propl
post (resultOk) : result = paraml - self.propl@pre

pre precondition with optional name (parameteroOk)
post postcondition with optional name (resultok)
self receiver object of the operation

result return value of the operation

@pre accesses the value before executing the operation

body: (expression) defines the result value of the
operation

@ pre, post, body are optional

OCL/Pre- and Postconditions/Examples

TeamMember Meeting Location
name : String 2.7 meetings title : String - name : String
age : Integer | Participants * | numParticipants : Integer 1

start : Date

duration: Time

move(newStart : Date)

context Meeting::move (newStart : Date)
pre: Meeting.allInstances()->forAll (m |
m<>self implies
disjoint (m, newStart, self.duration))

post: self.start = newStart

OCL/Pre- and Postconditions/Examples/2

context Meeting::joinMeeting (t : TeamMember)

pre: not (participants->includes (t))

post: participants—->includes (t) and
participants—->includesAll (participants@pre)

	Introduction MDA
	Goals of MDA
	The Concept ``Model''
	Formal Models
	Platform

	OCL

