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What is MDA?

@ MDA = Model Driven Architecture
e also: MD (Software/Application) Development, Model
Based [Development/Management/Programming]
e Model Driven Engineering, Model Integrated Computing
@ Initiative of the OMG (trade mark)
o Object Management Group: CORBA, UML, ...
e open consortium of companies (ca. 800 Firmen)
@ Goal: Improvement of software development process
o Interoperability
o Portability
@ Approach: Shift development process from code-centric to
model-centric

@ Reuse of models
e Transformation of models
e Code generation from models



Goals of MDA

Higher Degree of Abstraction

Portability and Reusability

@ Development abstracts from target platform
@ Technology mapping in reusable transformations
@ New technology = new transformation

Interoperability

@ Systems span several platforms
@ Information flow between platforms via bridges
@ Byproduct of model transformations



Goals of MDA

Models and Model Transformations

Productivity

Every development phase directly contributes to the product,
not just the implementation

Documentation and Maintenance

@ Changes throught changes of the models
@ Models are documentation = consistency
@ Separation of concern

@ Better handle on changing technology

Specialization

@ Business processes
@ Technologies



The Concept “Model”

(after Herbert Stachowiak, 1973)

Representation

A model is a representation of an original object.

Abstraction
A model need not encompass all features of the original object.

Pragmatism
A model is always goal-oriented.



The Concept “Model”

(after Herbert Stachowiak, 1973)

Representation

A model is a representation of an original object.

Abstraction
A model need not encompass all features of the original object.

Pragmatism
A model is always goal-oriented.

@ Modeling creates a representation that only encompasses
the relevant features for a particular purpose.



Formal Models

Models authored in a formal language

@ Textual: defined by grammar, BNF, etc
@ Grafical: defined by Metamodel

e Which modeling elements?
@ Which combinations?
@ Which modifications?

Models with a formal semantics

@ Example: logical formula = truth value
@ Example: context-free grammar =- language
@ Example: program = programm execution



Models in MDA
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Models in MDA/2

PIM vs PSM

@ Relative concepts

@ Smooth transition

@ Several levels of model and transformation steps possible
@ Inverse transformation PSM =- PIM unlikely

Transformation

@ Code is the ultimate model (PSM)
@ Model-to-code is a special case



Models and Transformations

PIM
[ psm | PSM
(Components) (WLS 8.2)
PS—M Code
(EJB 2.0) (Java / XML)
I .




Platform

@ API

@ Virtual machine

@ Provides several services

@ Examples

Different processors = hardware platform
Operating system = software platform
Java VM = software platform

EJB = component platform

CORBA, Webservices, ...
Application architecture, DSL (Domain Specific Language)



Examples for Platforms
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OCL



What is OCL?

@ OCL = object constraint language
@ standard query language of UML 2
@ expressions and constraints in object modeling artifacts



OCL/Expressions and Constraints

@ Expressions
o initial values, derived values
e parameter values
e body of operation (no side effects = limited to queries)
o of type: Real, Integer, String, Boolean, or model type
@ Constraints restrict the set of admissible instances
e invariant (class): condition on the state of the class’s
objects which is always true
e precondition (operation): indicates applicability
e postcondition (operation): must hold after operation if
precondition was met
e guard (transition): indicates applicability

@ Evaluation with respect to a snapshot of the instance graph



OCL/Context

@ Each OCL expression is interpreted relative to a context
e invariant: class, interface, datatype, component (a
classifier)
e precondition, postcondition: operation
@ guard: transition
@ Context is indicated

e graphically by attachment as a note
o textually using the context syntax



OCL/Example

TeamMember

name : String
age : Integer

2.% meetings

Meeting

participants

%

title : String
numParticipants : Integer
start : Date

duration: Time

Location

name : String

move(newStart : Date)




OCL/Example

TeamMember

name : String
age : Integer

2.% meetings

Meeting

participants

%

title : String

Location

numParticipants : Integer
start : Date
duration: Time

move(newStart : Date)

@ context TeamMember inv: age => 18

@ context Meeting inv: duration > 0

name : String




OCL/Invariants

@ Expressions of type Boolean

@ Interpreted in 3-valued logic (true, false, undefined)
@ Arithmetic/ logic expressions with usual operators

@ Attributes of the context object directly accessible

@ Alternatively through self. (attributeName)

@ Other values available through navigation



OCL/Navigation

@ Navigation traverses associations from one classifier to
another
@ Dot notation (object) . (associationEnd) yields
e associated object (or undefined), if upper bound of
multiplicity < 1
o the ordered set of associated objects, if association is
{ordered}
e the set of associated objects, otherwise
@ If association end not named, use
(object).(classNameOfOtherEnd)



OCL/Navigation/Examples

TeamMember Meeting Location
2.7% meetings *
name : String — 8 title : String name : String
age : Integer  |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context Meeting

@ self.location yields the associated object
@ self.participants yields set of participants



OCL/More Navigation

@ If navigation yields object, then continue with
e attribute notation
e navigation
e operation calls



OCL/More Navigation

@ If navigation yields object, then continue with

e attribute notation

e navigation

e operation calls
@ [f navigation yields a collection, then continue with a

collection operation (collOp):

e notation (collection)->(collOp) ({args))

o examples: size (), isEmpty (), notEmpty (), ...
@ Single objects may also be used as collections

@ Attributes, operations, and navigation of elements not
directly accessible



OCL/More Navigation/Examples

TeamMember Meeting Location
. 2.7% meetings | | . * .
name : String title : String name : String
age : Integer | Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context Meeting
@ inv: self.participants—->size() =
numParticipants
@ context Location
@ inv: name="Lobby" implies
meeting->isEmpty ()



OCL/Accessing Collection Elements

@ Task: Continue navigation from a collection
@ The collect operation

@ (collection)->collect ( (expression) )
@ (collection)->collect( v | (expression) )
@ (collection)->collect( v : (Type) | (expression) )

evaluates (expression) for each element of
(collection) (as context, optionally named)

@ Result is a bag (unordered with repeated elements); same
size as original (collection)

@ Change to a set using operation —>asSet ()



OCL/Accessing Collection Elements

@ Task: Continue navigation from a collection
@ The collect operation

@ (collection)->collect ( (expression) )
@ (collection)->collect( v | (expression) )
@ (collection)->collect( v : (Type) | (expression) )

evaluates (expression) for each element of
(collection) (as context, optionally named)

@ Result is a bag (unordered with repeated elements); same
size as original (collection)

@ Change to a set using operation —>asSet ()
@ Shorthands
o (col).(attribute) for
(col)->collect ((attribute))
@ (col).(op) ({args)) for (col)->collect ({op)
({(args)))



OCL/Accessing Collection Elements

TeamMember Meeting Location
. 2.7% meetings | . . * .
name : String title : String name : String
age : Integer | Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

@ context TeamMember

@ inv: meetings.start =
meetings.start->asSet () ->asBag ()



OCL/lterator Expressions

@ Task:
e Examine a collection
@ Define a subcollection

@ Tool: the iterate expression
(coll)->iterate ((it); (res) = (init) | (expr))
@ Value:
(Set {})->iterate
((it) ; (res) = (init) | (expr))

= (init)

(Set {x1, ...})—->iterate
((it) ; (res) = (init) | (expr))
= (Set {...})—->iterate

( (it)
; (res) = (expr)[(it) = x1, (res) = (init)]
| (expr))



OCL/lterator Expressions/Predefined

exists there is one element that makes (body) true
(source)—>exists ((it) | (body)) =
(source)->iterate ({(it);r=false | r or (body))
forall all elements make (body) true
(source)->forAll ({(it) | (body)) =
(source)->iterate ({(it);r=true | r and (body))
select subset where (body) is true
(source)->select ({(it) | (body)) =
(source)->iterate ({(it);r=Set{}|
if (body)
then r->including ({it))
else r
endif)



OCL/lterator Expressions/Predefined/2

@ Shorthand with implicit variable binding
(source)->select ((body))
@ Further iterator expressions

@ On Collection: exists, forAll, isUnique, any, one,
collect

@ On Set, Bag, Sequence: select, reject,
collectNested, sortedBy



OCL/lterator Expressions/Examples

TeamMember Meeting Location
. 2.% meetings | . * .
name : String title : String name : String
age : Integer | Participants * | numParticipants : Integer 1
start : Date
duration: Time

move(newStart : Date)

context TeamMember
inv: meetings->forAll (ml
| meetings->forAll (m2
| ml<>m2 implies disjoint (ml, m2)))
def: disjoint (ml : Meeting, m2 : Meeting) : Boolean =
(ml.start + ml.duration <= m2.start) or
(m2.start + m2.duration <= ml.start)

@ def: extends TeamMember by «OclHelper» operation



OCL/OclAny, OclVoid, Model Elements

@ OclAny is supertype of types from the UML model and all
primitive types (not of collection types)
@ Oclvoid is subtype of every type
@ single instance OclUndefined
e any operation applied to OclUndefined Yyields
OclUndefined (except oclIsUndefined())
@ OclModelElement enumeration with a literal for each
element in the UML model

@ OclType enumeration with a literal for each classifier in
the UML model

@ OclsState enumeration with a literal for each state in the
UML model



OCL/Operations on OclAny

= (obj : OclAny) : Boolean

<> (obj : OclAny) : Boolean

oclIsNew() : Boolean

oclIsUndefined() : Boolean

oclAsType (typeName : OclType) : T
oclIsTypeOf (typeName : OclType) : Boolean
oclIsKindOf (typeName : OclType) : Boolean

oclIsInState (stateName : OclState)
Boolean

allInstances () : Set (T) must be appliedto a
classifier with finitely many instances

= and <> also available on 0c1ModelElement, OclType,
and OclState



OCL/Operations on OclAny/Examples

TeamMember Meeting Location
2..% meetings *
name : String — 8 title : String name : String
age : Integer  |Participants * | numParticipants : Integer 1
start : Date

duration: Time

move(newStart : Date)

context Meeting inv:
title = "general assembly" implies
numParticipants = TeamMember.alllInstances()->size()



OCL/Pre- and Postconditions

Specification of operations by

context (Type)::(operation) ({(paraml) : (Typel), ... ):
pre (parameterOk): paraml > self.propl
post (resultOk) : result = paraml - self.propl@pre

pre precondition with optional name (parameteroOk)
post postcondition with optional name (resultok)
self receiver object of the operation

result return value of the operation

@pre accesses the value before executing the operation

body: (expression) defines the result value of the
operation

@ pre, post, body are optional



OCL/Pre- and Postconditions/Examples

TeamMember Meeting Location
name : String 2.7 meetings title : String - name : String
age : Integer | Participants * | numParticipants : Integer 1

start : Date

duration: Time

move(newStart : Date)

context Meeting::move (newStart : Date)
pre: Meeting.allInstances()->forAll (m |
m<>self implies
disjoint (m, newStart, self.duration))

post: self.start = newStart



OCL/Pre- and Postconditions/Examples/2

context Meeting::joinMeeting (t : TeamMember)

pre: not (participants->includes (t))

post: participants—->includes (t) and
participants—->includesAll (participants@pre)
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