Software Engineering
Model Driven Architecture
Applications of Metamodeling

Prof. Dr. Peter Thiemann, Stefan Wehr

Universitat Freiburg

18.07.2008



Applications of Metamodeling

Feature Modeling

@ Feature models are a tool for domain analysis

e Provide a hierarchical view of features and their
dependencies
e Establish an ontology for categorization

@ Visualized by feature diagrams

@ Conceived for software domain analysis: Kang, Cohen,
Hess, Novak, Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report
CMU/SEI-90-TR-21. 1990.

@ Popularized for Generative Programming by Czarnecki and
Eisenacker

@ Also for analyzing other domains



Feature Modeling

Example

Vehicle

manual automatic electrical

@ Hierarchical, but not is-a relation (as in a class diagram)

@ Features may be qualified as
required, optional, alternative, or n-of-m (selection)



Feature Modeling

MOF-based Metamodel

attributes

MOF::Attribute

type:String

value:String MOF
| Feature
I<<instanceof>> Modelling

kind

parent

FM::Concept

inv:parent==null

FM::GroupKind
inv:value=="required"llvalue=="optional"ll
value=="alternative"llvalue=="nOfM"

invitype=="String"




Feature Modeling

Feature Model in Abstract Syntax

Features

additionalFeatureSFG: additionalFeature: addFeatureTWoSFG: p| e
D EM::Feature p FM::Feature
Kind=" optional" name=" AdditionalFestures’ Kind="nOfM" name=" ThreadSafety”
boundsFeature:
EM::Feature
name=" BoundsCheck”
typeFeature:
FM::Feature
name="TypeCheck
optimizationSFG: optimizationFeature: dSFG: seedFeature:
FM::SubfestureGroup FM::Feature FM::SubfeatureGroup FM::Feature
kind="optional” name=" Optimization” Kind="alternative" name=" Speed”
memoryFeature:
Optimization F Stack Additional FM:Feature

Thread
Safety

name="MemoryUsage"




Feature Modeling

Extended Metamodel and Concrete Syntax

Metamodel

Object diagram

optimizationFeature

FM::Feature

FM::Feature

open:boolean

name=""Optimization""

open=true

New feature =

@ new attribute in metamodel

@ new slot in model

@ extension of concrete syntax

Feature diagram

—

Optimization

[open]




Applications of Metamodeling

Component Modeling

@ Domain specific modeling language for small and
embedded systems

@ Main abstraction: component

@ A component may

@ provide services via interfaces
@ require services via interfaces
e have configuration parameters
@ be an application (does not provide services)



Component Modeling

Example

<<application>>

SMSApp

SMSIF CalllF EMSIF

GSMStack

MenuUtilities

TextEditor
|
|
B
S .
UIManager

lookAndFeel:String




Component Modeling

Simple Component Metamodel

ConfigParam
{subsets
Attributes}
1 * B 1
Component ports Port — Interface
Application RequiredPort ProvidedPort
K from to
context Application
inv: pe ¢ i isEmp Port context PortDependency
Dependency
terfa




Component Modeling

MOF-based Simple Component Metamodel

{subsets Features}

UML::

Attribute

UML::

UML::Class

name: String Interface

type: String

Interface

Component

RequiredPort

context ConfigParam context PortDependency

inv: type = "String""

Dependency

: to.Interface = from.Interface

context Application

inv: p d i iSEmp




Pitfalls in Metamodeling

How to avoid
@ confusion with UML notation
@ mixing metalevels
Central question
@ what is the mapping to a programming language?



Interfaces

Every instance of Entity should implement Somelnterface

@ wrong approach

<<interface>>

Somelnterface Entity

@ book solution use OCL or subsetting of metaassociation

Enmtity Y """ TTTTTTToT realization

—>exists(oclIsTypeOf(Somelnterface))

{subsets realization} 1 |
Entity | Somelnterface




Interfaces/2

Every instance of Entity should implement Somelnterface

@ correct solution use OCL

realization
Entity = P """ """""------ —>select(hasStereotype("interface"))
—>select(name=""Somelnterface")
—>size() =1
N
| <<instanceof>>
implements <<interface>>
A [> Somelnterface




	Metamodeling Applications
	Feature Modeling
	Component Modeling

	Pitfalls in Metamodeling

