
Softwaretechnik
Lecture 06: Design by Contract

Peter Thiemann

Universität Freiburg, Germany

SS 2008



Design by Contract

Table of Contents

Design by Contract
Contracts for Procedural Programs
Contracts for Object-Oriented Programs
Contract Monitoring
Verification of Contracts

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 2 / 33



Design by Contract

Basic Idea

Transfer the notion of contract between business partners to software
engineering

What is a contract?
A binding agreement that explicitly states the obligations and the benefits
of each partner

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 3 / 33



Design by Contract

Example: Contract between Builder and Landowner

Obligations Benefits
Landowner Provide 5 acres of

land; pay for building if
completed in time

Get building in less
than six months

Builder Build house on provi-
ded land in less than
six month

No need to do any-
thing if provided land
is smaller than 5 acres;
Receive payment if
house finished in time

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 4 / 33



Design by Contract Contracts for Procedural Programs

Who are the contract partners in SE?

Partners can be modules/procedures, objects/methods,
components/operations, . . .
In terms of software architecture, the partners are the components and
each connector may carry a contract.

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 5 / 33



Design by Contract Contracts for Procedural Programs

Contracts for Procedural Programs

I Goal: Specification of imperative procedures

I Approach: give assertions about the procedure

I Precondition
I must be true on entry
I ensured by caller of procedure

I Postcondition
I must be true on exit
I ensured by procedure if it terminates

I Precondition(State) ⇒ Postcondition(procedure(State))

I Notation: {Precondition} procedure {Postcondition}
I Assertions stated in first-order predicate logic

I May also be used to specify the semantics of imperative programs

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 6 / 33



Design by Contract Contracts for Procedural Programs

Example

Recall the following procedure:

/∗∗
∗ @param a an integer
∗ @returns integer square root of a
∗/

int root (int a) {
int i = 0;
int k = 1;
int sum = 1;
while (sum <= a) {

k = k+2;
i = i+1;
sum = sum+k;

}
return i;

}

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 7 / 33



Design by Contract Contracts for Procedural Programs

Specification of root

I types guaranteed by compiler: a ∈ integer and root ∈ integer
(the result)

1. root as a partial function

Precondition: a ≥ 0
Postcondition: root ∗ root ≤ a < (root + 1) ∗ (root + 1)

2. root as a total function

Precondition: true
Postcondition:

(a ≥ 0 ⇒ root ∗ root ≤ a < (root + 1) ∗ (root + 1))
∧
(a < 0 ⇒ root = 0)

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 8 / 33



Design by Contract Contracts for Procedural Programs

Weakness and Strongness

Goal:

I find weakest precondition
i.e. a precondition that is implied by all other preconditions
highest demand on procedure
biggest domain of procedure
(meaning of precondition false?)

I find strongest postcondition
i.e. a postcondition that implies all other postconditions
smallest range of procedure
(meaning of postcondition true?)

Met by “root as a total function”:

I true is weakest possible precondition

I “defensive programming”

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 9 / 33



Design by Contract Contracts for Procedural Programs

Example (Weakness and Strongness)

Look at root as a function over integers

Procondition: true

Postcondition:
(a ≥ 0 ⇒ root ∗ root ≤ a < (root + 1) ∗ (root + 1))
∧
(a < 0 ⇒ root = 0)

I true is the weackest precondition

I The postcondition can be strengthen to

(root ≥ 0) ∧
(a ≥ 0 ⇒ root ∗ root ≤ a < (root + 1) ∗ (root + 1)) ∧
(a < 0 ⇒ root = 0)

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 10 / 33



Design by Contract Contracts for Procedural Programs

Partial Correctness vs Total Correctness

. . . of a procedure f with precondition P and postcondition Q

I f is partially correct:
for all states S :
if precondition P holds for S and f terminates from state S , then
postcondition Q holds.

I f is totally correct:
for all states S :
if precondition P holds for S , then f terminates from state S , and
postcondition Q holds.

⇒ Total correctness requires proof of termination

⇒ Total correctness implies partial correctness

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 11 / 33



Design by Contract Contracts for Procedural Programs

An Example

Insert an element in a table of fixed size

int capacity; // size of table
int count; // number of elements in table
T get (String key) {...}
void put (T element, String key);

Precondition: table is not full
count < capacity

Postcondition: new element in table, count updated

count ≤ capacity
∧ get(key) = element
∧ count = old count + 1

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 12 / 33



Design by Contract Contracts for Procedural Programs

Obligations Benefits
Caller Call put only on

non-full table
Get modified table
in which element
is associated with
key

Procedure Insert element in
table so that it
may be retrieved
through key

No need to deal
with the case whe-
re table is full be-
fore insertion

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 13 / 33



Design by Contract Contracts for Procedural Programs

Further elements of a contract

I type signature (minimal contract)

I exceptions raised
I temporal properties (type invariant)

I the capacity of the table does not change over time
I a set that is only supposed to grow

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 14 / 33



Design by Contract Contracts for Object-Oriented Programs

Contracts for Object-Oriented Programs

Contracts for methods have additional complications

I local state
receiving object’s state must be specified

I inheritance and dynamic method dispatch
receiving object’s type may be different than statically expected;
method by be overridden

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 15 / 33



Design by Contract Contracts for Object-Oriented Programs

Local State ⇒ Class Invariant

I class invariant INV is predicate that holds for all objects of the class

⇒ must be established by all constructors

⇒ must be maintained by all visible methods

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 16 / 33



Design by Contract Contracts for Object-Oriented Programs

Pre- and Postconditions for Methods

I constructor methods c

{Prec} c {INV }

I visible methods m

{Prem ∧ INV } m {Postm ∧ INV }

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 17 / 33



Design by Contract Contracts for Object-Oriented Programs

Table example revisited

I count and capacity are instance variables of class TABLE

I INVTABLE is count ≤ capacity

I specification of void put (T element, String key)

Precondition:
count < capacity

Postcondition:

get(key) = element ∧ count = old count + 1

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 18 / 33



Design by Contract Contracts for Object-Oriented Programs

Inheritance and Dynamic Binding

I Subclass may override a method definition
I Effect on specification:

I Subclass may have different invariant
I Redefined methods may

I have different pre- and postconditions
I raise different exceptions
⇒ method specialization

I Relation to invariant and pre-, postconditions in base class?

I Main guideline: No surprises requirement (Wing, FMOODS 1997)
Properties that users rely on to hold of an object of type T should
hold even if the object is actually a member of a subtype S of T .

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 19 / 33



Design by Contract Contracts for Object-Oriented Programs

Invariant of a Subclass

Suppose

class MYTABLE extends TABLE ...

I each property expected of a TABLE object should also be granted by a
MYTABLE object

I if o has type MYTABLE then INV TABLE must hold for o

⇒ INV MYTABLE ⇒ INV TABLE

I Example: MYTABLE might be a hash table with invariant

INV MYTABLE ≡ count ≤ capacity/3

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 20 / 33



Design by Contract Contracts for Object-Oriented Programs

Method Specialization

If MYTABLE redefines put then . . .

I the new precondition must be weaker and

I the new postcondition must be stronger

because the caller

I garenties only Preput,Table
I and expects Postput,Table

TABLE cast = new MYTABLE (150);
...
cast.put (new Terminator (3), ”Arnie”);

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 21 / 33



Design by Contract Contracts for Object-Oriented Programs

Requirements for Method Specialization

Suppose class T defines method m with assertions PreT ,m and PostT ,m

throwing exceptions ExcT ,m. If class S extends class T and redefines m
then the redefinition is a sound method specialization if

I PreT ,m ⇒ PreS ,m and

I PostS ,m ⇒ PostT ,m and

I ExcS ,m ⊆ ExcT ,m

each exception thrown by S .m may also be thrown by T .m

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 22 / 33



Design by Contract Contracts for Object-Oriented Programs

Example: MYTABLE.put

I PreMYTABLE,put ≡ count < capacity/3
not a sound method specialization because it is not implied by
count < capacity.

I MYTABLE may automatically resize the table, so that PreMYTABLE,put ≡ true
a sound method specialization because count < capacity⇒ true!

I Suppose MYTABLE adds a new instance variable T lastInserted that holds
the last value inserted into the table.

PostMYTABLE,put ≡ item(key) = element
∧ count = old count + 1
∧ lastInserted = element

is sound method specialization because PostMYTABLE,put ⇒ PostTABLE,insert

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 23 / 33



Design by Contract Contracts for Object-Oriented Programs

Methodenspezialisation in Java 5

I Overriding methods in Java 5 only allows spezialisation of the result
type. (It can be replaced by a subtype).

I The parameter types muss stay unchanged (why?)

Example : Assume A extends B

class C {
A m () {

return new A();
}

}
class D extends C {

B m () { // overrides A.m
return new B();

}
}

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 24 / 33



Design by Contract Contract Monitoring

Contract Monitoring

I What happens if a system’s execution violates an assertion at run
time?

I A violating execution runs outside the system’s specification.
I The system’s reaction may be arbitrary

I crash
I continue
I contract monitoring: evaluate assertions at runtime and raise an

exception indicating any violation

I Why monitor?
I Debugging (with different levels of monitoring)
I Software fault tolerance (e.g., α and β releases)

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 25 / 33



Design by Contract Contract Monitoring

What can go wrong

precondition: evaluate assertion on entry
identifies problem in the caller

postcondition: evaluate assertion on exit
identifies problem in the callee

invariant: evaluate assertion on entry and exit
problem in the callee’s class

hierarchy: unsound method specialization
need to check (for all superclasses T of S)

I PreT ,m ⇒ PreS ,m on entry and
I PostS ,m ⇒ PostT ,m on exit

how?

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 26 / 33



Design by Contract Contract Monitoring

Hierarchy Checking

Suppose class S extends T and overrides a method m.
Let T x = new S() and consider x .m()

I on entry
I if PreT ,m holds, then PreS,m must hold, too
I PreS,m must hold

I on exit
I PostS,m must hold
I if PostS,m holds, then PostT ,m must hold, too

I in general: cascade of implications between S and T

I pre- and postcondition only checked for S!

I If the precondition of S is not fullfiled, but the one of T is, then this
is a wrong method spzialisation.

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 27 / 33



Design by Contract Contract Monitoring

Examples

interface IConsole {
int getMaxSize();

@post { getMaxSize > 0 }
void display (String s);

@pre { s.length () < this.getMaxSize() }
}

class Console implements IConsole {
int getMaxSize () { ... }

@post { getMaxSize > 0 }
void display (String s) { ... }

@pre { s.length () < this.getMaxSize() }

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 28 / 33



Design by Contract Contract Monitoring

A Good Extension

class RunningConsole extends Console {
void display (String s) {

...
super.display(String. substring (s, ..., ... + getMaxSize()))
...

}
@pre { true }

}

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 29 / 33



Design by Contract Contract Monitoring

A Bad Extension

class PrefixedConsole extends Console {
String getPrefix() {

return ”>> ”;
}
void display (String s) {

super.display (this.getPrefix() + s);
}

@pre { s.length() < this.getMaxSize() − this.getPrefix().length() }
}

I caller may only guarantee IConsole’s precondition

I Console.display can be called with to long argument

I blame the programmer of PrefixedConsole!

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 30 / 33



Design by Contract Contract Monitoring

Example 2: Bad Interface Extension

Programmer Jim

interface I {
void m (int a);

@pre { a > 0 }
}

interface J extends I {
void m (int a);

@pre { a > 10 }
}

Programmer Don

class C implements J {
void m (int a) { ... };

@pre { a > 10 }

public static void
main (String av[]) {
I i = new C ();
i.m (5);

}
}

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 31 / 33



Design by Contract Contract Monitoring

Properties of Monitoring

I Assertions can be arbitrary side effect-free boolean expressions

I Instrumentation for monitoring can be generated from the assertions

I Monitoring can only prove the presence of violations, not their absence

I Absence of violations can only be guaranteed by formal verification

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 32 / 33



Design by Contract Verification of Contracts

Verification of Contracts

I Given: Specification of imperative procedure by Precondition and
Postcondition

I Goal: Formal proof for
Precondition(State) ⇒ Postcondition(procedure(State))

I Method: Hoare Logic, i.e., a proof system for Hoare triples of the form

{Precondition} procedure {Postcondition}

I named after C.A.R. Hoare, the inventor of Quicksort, CSP, and many
other

I here: method bodies, no recursion, no pointers (extensions exist)

Peter Thiemann (Univ. Freiburg) Softwaretechnik (draft) SWT 33 / 33


	Design by Contract
	Contracts for Procedural Programs
	Contracts for Object-Oriented Programs
	Contract Monitoring
	Verification of Contracts


